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How spiking neuronal networks encode memories in their different time and spatial scales
constitute a fundamental topic in neuroscience and neuro-inspired engineering. Much attention has
been paid to large networks and long-term memory, for example in models of associative memory.
Smaller circuit motifs may play an important complementary role on shorter time scales, where
broader network effects may be of less relevance. Yet, compact computational models of spiking
neural networks that exhibit short-term volatile memory and actively hold information until their
energy source is switched off, seem not fully understood. Here we propose that small spiking
neural circuit motifs may act as volatile memory components. A minimal motif consists of only
two interconnected neurons – one self-connected excitatory neuron and one inhibitory neuron – and
realizes a single-bit volatile memory. An excitatory, delayed self-connection promotes a bistable
circuit in which a self-sustained periodic orbit generating spike trains co-exists with the quiescent
state of no neuron spiking. Transient external inputs may straightforwardly induce switching
between those states. Moreover, the inhibitory neuron may act as an autonomous turn-off switch. It
integrates incoming excitatory pulses until a threshold is reached after which the inhibitory neuron
emits a spike that then inhibits further spikes in the excitatory neuron, terminating the memory. Our
results show how external bits of information (excitatory signal), can be actively held in memory for
a pre-defined amount of time. We show that such memory operations are robust against parameter
variations and exemplify how sequences of multidimensional input signals may control the dynamics
of a many-bits memory circuit in a desired way.
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I. INTRODUCTION

Memory plays a fundamental role in biological, bio-inspired and abstract artificial
computing systems. While in standard computers memory is usually implemented as
discrete components [1], which can be addressed by other components as needed, in self-
organized dynamical systems, computation and memory are typically intertwined, with
computation and memory access taking place concurrently [2, 3]. In particular, neural
networks are composed of many discrete computing units called neurons with memory being
stored in the network’s connectivity itself. The result of a computation is the observable
emergent collective dynamics.

Due to its parallel and distributed nature, memory studies on neural networks have
traditionally focused on large-scale systems, which not only exhibit a variety of emerging
phenomena but also may become analytically tractable in the limit of large networks (N →
∞) [4]. One key example of such collective phenomena is associative memory, in which
memories are represented as attractors in state space, such that partial initial information
or corrupted input signals may be sufficient to recover original stored associated memories.
Most neural networks models, for memory or computation, are also non-volatile [5, 6], such
that the information stored in the connections need not to be actively maintained but stay
long-term without ongoing energy inputs required. Volatility, however, may be essential
for a variety of cognitive functions, as working memory and real-time planning [7, 8], in
particular on shorter timescales, where broader network effects may be of a lesser relevance.

Here we propose spiking neural network motifs to act as volatile memory components.
A minimal example is composed of only two interconnected neurons (see Figure 1), one
excitatory neuron with a delayed self-connection (autapse) and one inhibitory neuron,
yielding a bistable motif circuit. A self-sustained periodic spike-train, representing an ‘on’
state and thus a bit ‘1’ co-exists with the quiescent state, representing an ‘off’-state and thus
a bit ‘0’. Switching between those states is controlled by transient external inputs to either
the inhibitory or the excitatory neuron. Alternatively, the inhibitory neuron may also act as
an autonomous off switch for the circuit. That neuron integrates the pulses incoming from
the excitatory neuron until it reaches a spiking threshold upon which the inhibitory neuron
emits a spike and terminates the self-sustained periodic spike-train at the excitatory neuron,
overall turning the collective motif state from ‘1’ to ‘0’ . Collections of such motif may be
used in parallel to represent more complex information as independent bits, if larger-scale
network effects are not desirable or not relevant .

Our results below show how an external bit of information can be actively held in memory
for a pre-defined amount of time. To hold a ‘1’ bit in memory, neural spiking activity
and thus energy is needed, making the memory system volatile. The small neural circuits

FIG. 1. Spiking neural circuit motifs that implement a 1-bit volatile memory. Blue circles
labeled as ‘E’ represent excitatory neurons, red circles labeled as ‘I’ represent inhibitory neurons,
circles as arrow heads represent inhibitory connections and conventional arrows represent excitatory
connections. (a) A minimal circuit composed of two neurons, one excitatory and one inhibitory.
(b) A circuit composed of an excitatory ring sub-network and an inhibitory neuron. (a-b) In both
cases, the excitatory component has self-connections and connections to the inhibitory neurons
while the inhibitory feedback connects to all excitatory neurons.
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introduced below may serve as basic memory units for short-term volatile memory, and thus
may complement the broad variety of previously proposed computational neural circuits
and memory models [5, 9, 10], in particular the set of, also volatile, computing paradigms
emerging in symmetrical systems [11–14] or stochastic dynamics in random networks with
local excitation and global inhibition [15, 16], which also take advantage of self-organization
instead of carefully tuned (many) connections between neurons.

II. MINIMAL MODEL OF NEURONAL NETWORK MOTIF

In this work we present a compact neuronal circuit motif that implements a 1-bit volatile
memory. Volatile in this context means that spike activity, and thus energy, is needed
to maintain at least one of the memory states. The system is compact because it can
be implemented with as few as two neurons. For instance, as we sketch in Figure 1a,
the system may be implemented with one inhibitory neuron and one excitatory neuron
only. The connectivity is such that the excitatory neuron has a self connection and a
connection to the inhibitory neuron; the inhibitory neuron has a single connection to the
excitatory neuron. Alternatively, the excitatory component may be composed of a ring
(Figure 1b) or other small population of neurons to better resemble a biological neural circuit
or to otherwise circumvent self-connections. To explain the basic mechanisms and collective
dynamics underlying volatile memory function of such motifs, we consider a minimal motif
of two neurons in the remainder of this article.

For clarity of presentation we here mathematically describe the neurons as Leaky
Integrate-and-Fire neuron models that exhibit parameters with a direct physical meaning
also for potential hardware implementations. Leaky integrate-and-fire models already
capture main fundamental features of spiking neurons, including their dynamics exhibiting
two different times scales: a long term sub-threshold dynamics and short term interactions
(spikes) modeled via discrete pulse responses. Our specific model is defined by a pair of
differential equations,

dVE

dt
= AE + ξE(t)− γEVE +

∑
ti∈PE

εEδ(t− ti − τE) +
∑
tj∈PI

εIδ(t− tj − τI) + ηE(t) (1)

dVI

dt
= AI + ξI(t)− γIVI +

∑
ti∈PE

εEδ(t− ti − τE) + ηI(t) (2)

complemented by conditions for spike emission and reset. Specifically, we say that neuron
X ∈ {E, I} emits a spike at time t := tn if its voltage reaches a threshold,

VX(t) ≥ θ

after which that voltage is reset to

V (t+) := 0.

The time tn indicates the nth spike time in the motif circuit (after some reference time t0).
Moreover, the parameters AX represent temporally the internal driving currents that set the
equilibrium voltage (see below), ξX(t) external driving currents serving as input signal to
store or remove memories, and γX the leak constants. Finally εX represent the connection
weights, τX the delays between a spike emitted by neuron X and reception of that spike
and PX denotes the set of all pulses elicited by a neuron X. The indices E and I indicate
features of the excitatory and inhibitory neurons, respectively. Finally the inputs ηX are
the contribution of internal noise. We remark that the autonomous part of the system of
equations above, i.e. for ηX(t) = ξX(t) ≡ 0, has an analytical solution in between spike
events and equally enable a piecewise, exact event-based simulations [17–19].
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III. SELF-SUSTAINED AND SELF-TERMINATED MEMORY

In the 2-unit motif network, two qualitatively different collective dynamics coexist
(Figure 2), one exhibiting a self-sustained spike train created by the excitatory neuron,
encoding a bit value ‘1’, the other a quiescent state with no spikes emitted, encoding the
bit value ‘0’. To store the value ‘1’, an excitatory signal ξE is sent to the excitatory neuron;
to switch from a bit ‘1’ to zero, an external excitatory signal ξI is sent to the inhibitory
neuron. Both types of external signals ξX need to be sufficiently strong, i.e. of sufficiently
large amplitude and duration. The exact shape of these input signals as a function of time is
not relevant as long as they are sufficiently rapid and charge the targeted neuron sufficiently
for it to cross threshold and spike.

In the absence of external input signals, the voltage of both neurons with time tends
towards their respective fixed points VE := IE/γE and VI := AI/γI , see Figure 2 before
input onset. A short transient input signal ξE triggers the release of the first spike by the
excitatory neuron. In turn, this spike arrives in both neurons after a delay τE . For sufficiently
strong pulse (response) amplitudes εE , the excitatory neuron sends a second spike and the
process repeats. The motif network then maintains a spike-train with frequency 1/τE until
it is interrupted by an inhibitory pulse. There are two different mechanisms potentially
causing such an interruption. First, a strong excitatory signal ξI(t) could be sent at any
desired time from outside the motif, see Figure 2a. Second, these systems hold the option of
self-sustained and self-terminating memory function (see Figure 2b), with memory duration
set by system parameters (that might, in turn, be varied on demand): The ongoing sequence
of excitatory pulses fed into the inhibitory neuron promotes consecutive voltage jumps. If
one such spike brings the inhibitory neuron to or beyond its firing threshold, the inhibitory
neuron elicits a spike that after a delay τI causes a voltage leak in the excitatory neuron,
thereby interrupting the self-sustained spike-train.

FIG. 2. Bistable dynamics: memory initiation and termination. For both panels, the upper
graphs represent input currents as a function of time while the lower ones represent the voltages of
inhibitory and excitatory neurons.(a) After a short input signal (upper panel), the excitatory neuron
switches from its quiescent state to a self-sustained active state.A second external signal drives the
inhibitory neuron to spike, which in turn terminates the memory, back to the quiescent state. (b)
After the memory is initiated, the excitatory feedback loop persists until the inhibitory neuron
produces a pulse, triggered by the consecutive excitatory pulses, thus terminating the memory.
Parameters are: AE = 0.9, AI = 0.01, γE = 1, γI = 0.12, θE = 1, θI = 0.3, τE = 3, τI = 2,
εE = 0.05, εI = −0.2.



5

IV. MEMORY DURATION

An interesting feature of the memory circuit motif presented is its tunable memory
duration. Quantitatively, how long the an on-state is held active before self-terminating
depends on most of the system parameters, for example on the pulse amplitudes (and
durations), the delays, and the leak constant γX . For a qualitative analysis, we study the
memory duration in terms of variations of the leakage parameter γI and the firing threshold
θI , fixing all other parameters. A natural way to measure the memory duration is in terms
of number of elicited spikes; the absolute real time again depends on chosen parameters set
in any motif implementation. Furthermore, because the excitatory neuron’s role is simply
to generate a spike-train with a fixed frequency 1/τE , we here studied the memory duration
from the perspective of the inhibitory neuron’s response to such spike-trains.

As shown in Figure 3a, if γI is large enough, most of the current injected into a neuron is
lost during the inter-spike intervals and the voltage curve resembles a non-linear saw wave
with a small up-drift. Contrariwise, in the limit of γI → 0, no current is lost, as there is
no leak term, and the voltage curve thus has a stair shape. Intermediary values show an
average logarithmic increase overlayed by the spikes. Notice the exact values of γI shown in
Figure 3 are only illustrative, as the same qualitative effects can be achieve for fixed γI and
varying, for example, τE instead. We also expect the system to show robustness to small
variations of εE as the leakage grows exponentially with the deviation from the resting state,
see Figure 3b.

The memory duration is controllable. For depiction, we varied the firing threshold θI and
fixed all other parameters. Figure 3c shows how larger γI values restrict the discernible
memories’ duration to a predefined interval of pulses, as the voltage peaks immediately after

FIG. 3. Memory duration and long-term dynamics (a) Dynamical response of the inhibitory
neuron to long spike trains with fixed frequency and amplitude. The larger the leak constant γI ,
the slower the voltage increases on average. (b) Given an instantaneous voltage jump ∆Vfix at
time t0 from the resting state, this panel shows the recovery time ∆t, in which the voltage is
V (∆t) − VI = 10−5 away from its resting states. The larger the leak constant γI , the shorter the
recovery time for the same ∆Vfix. (c) Number of spikes received by the inhibitory neuron until
reset as a function of its threshold θ. (d) As in (c), but for a smaller γ = 10−10. The smaller γI ,
the longer the curve resembles an equally spaced stair. Parameters: the same as in Figure 2 if not
stated otherwise. AI = 10−4 for all panels.
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consecutive spikes get closer exponentially fast. For large enough θI the memory duration
is in practice long-term, as the actual difference between the voltage peaks (at spike times)
decreases exponentially with θI and the voltage does not converge to the threshold in finite
time or converge to a value below the threshold. For γI → 0, the leak is negligible, and the
memory duration increases in equally spaced steps, multiples of to the spike amplitude εE
(Figure 3d). We remark that long-term memory in this context does not imply storage but
long-lasting, as the memory here is always sustained by pulses and is, thus, still volatile.

V. INFLUENCE OF NOISE

Noise is an ever-present feature in biological and artificial (hardware) neural networks. Its
role in memory and computation is varied and is often beneficial, in contrast to their effects
in signal transmission lines. We now describe the effects of noise on our compact memory
circuit. In the following, we add independent Gaussian noise sources ηX(t), with identically
distributed random components, to both neurons. The noise is modeled (approximated) by
adding the term

ηX(t+ δt)− ηX(t) =
√
δtNrand(σ, 0) (3)

to the righthand side of equations (1) and (2). Here Nrand(σ, 0) is a random number
drawn from a Gaussian distribution with variance σ and centered at zero. To conserve
the event-based feature time evolution noise is evaluated after discrete times intervals δt
drawn independently from a Poisson distribution with average ⟨δt⟩ = τE/100. That is, the
noise sample intervals are randomized and independent for each neuron, while their average
sampling interval is fixed.

Figure 4 illustrates the effect of different noise amplitudes for small and for intermediate

FIG. 4. Noise-induced variability of memory duration. Average number of spikes (black
curves) received by the inhibitory neuron until its first spike and standard deviation (blue and red
backgrounds) as functions of the inhibitory neuron’s firing threshold. Measures calculated over 1000
repetitions at intervals of 0.01 volts. (a-c) For fixed γI , changing the noise standard deviation σ
softens the staircase features of the curve. Even though the mean does not seem to deviate too far
from the noiseless case, the standard deviation monotonically increases with θ. (d-e) Same results
as in (a-c), but with a slower increase rate. Parameters: same parameters as in Figure 3 if not
stated otherwise.
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noise amplitudes, γI = 0.05 and γI = 10−10, respectively. Qualitatively, the results are
the same in their most important aspects. Initially, for small σ, noise mostly affects the
vicinity of the transition points between two memories duration (step jumps). As a result,
the steps themselves become less steep than without noise. For larger noise strength σ,
the plateaus (progressively) lose their identity, due to the large variability in the memory
duration between random realizations, as also reflected in an increase in the standard
deviation of the number of spikes to reset. Because the voltage plateaus for large γI
become progressively smaller without noise, the increase in standard deviation becomes also
progressively larger and more apparent with larger θI , compare Figure 4b-c to Figure 4e-f.
Furthermore, combinations of small enough θI with large enough σ may promote eventual
noise-induced spikes in the inhibitory neuron (false positive), even without an external signal
to any of the neurons. As a consequence, spike events occur even before the excitatory neuron
has its first spike, which translate in average memory duration below 1 in Figures 4(b-c) and
Figures 4(e-f). Notice, 1 is the minimum memory length for the noise-free dynamics, that
is, a single excitatory spike promoting an inhibitory spike.

VI. LOADING AND FLUSHING MULTI-DIMENSIONAL MEMORIES

In neuronal systems, sets of neurons or neuronal networks can be used to represent and
store information. In our approach to transiently holding bits in memory, neurons are
interconnected forming small motifs. In the simplest setting, multi-dimensional memories
may thus be established by multiple motifs acting independently and in parallel. In such
settings, multi-dimensional inputs can be loaded concurrently into memory as independent
bits, not unlike in a traditional computer (see Figure 5). In our model, loading a bit in
memory is intuitive and in line with traditional computer, each single bit can be set to one
of two states almost instantaneously (within one spike cycle interval), independently of the
current states of the neuron. Furthermore, this system exhibits a natural ground state (non-
active), to which the system abruptly switch after the memory interval elapses. Moreover,
the state representation is very convenient for binary codes, as one state has spike activity
and the other has a complete absence of spikes, thus, it does not require involved decoding
approaches.

Figure 5 shows how a sequence of words can be loaded into an array of neurons.
As expected from our previous discussion around Figure 2, a new value can be loaded
independent of the system state. The single false positive spikes after each active-to-
quiescent change of states occurs due to the delay τI , i.e. spike signals still in transit
(sent but not yet received). As a consequence, the desired system state, i.e. the collective

FIG. 5. A sequence of four-bits words. Only excitatory spikes are depicted. Four independent
1-bit neural circuit receive a sequence of four four-bits words. The last signal also serves to reset the
system. Inputs label as 0 represent short inputs to the inhibitory neuron and as 1 to the excitatory
neuron. In both cases the signal’s duration is 0.3 and the amplitude is 0.5, see Figure 2 for details.
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dynamics at all motifs, is assumed after a (small) lag time ∆t > τI . The exact timing
depends on the excitatory neuron’s voltage at the time it receives the inhibition. This
observation sets a minimum of two consecutive pulses with frequency 1/τE to guarantee a
correct solution, because after a change in input signals, a single pulse may still be triggered
by the former input signal (a false ‘1’). The real-world (clock) time interval τE , e.g. in
seconds, is defined by the neuron model time scales, by choosing the units for τE .

VII. DISCUSSION

We have proposed a general concept of implementing tunable volatile memory in simple
neural networks. Such networks are small network motifs and exploit bi- or multistability to
realize memory dynamically. Memory duration is either determined by system parameters
that set the time scale of self-terminating a memory, or by external signals.

The concept of volatile memory is already familiar in computer science, see [20]. It is
defined as a memory type that is actively maintained by the system, thus continuously
consuming power. Contrary to storage, such memory is erased each time power is no longer
provided to the system. Inspired by such concepts, we here proposed that simple neural
motifs may act as volatile memory components. Our model is fundamentally different from
previous neuronal models with similar functionality, which rely on, e.g., short-term plasticity
([21]), because our model requires no changes in the network connectivity or their weights.
Instead, memory is held dynamically in the spike configuration until terminated internally
or externally. We specifically analyzed a simple 1-bit volatile memory neural network motif
that exhibit bi-stability. The bit ‘1’ is represented by a self-sustained spike train and the bit
‘0’ by no spiking activity.

Our focus on minimal motifs was motivated by two aspects: first, independent bits may
play an important role in small systems, where network effects may be less relevant; second,
the minimal 2-neuron systems offers maximal clarity in gaining insights about fundamental
mechanisms that underlie both the self-organized collective dynamics of a motif and its
response to external control signals. We remark that the same concept and mechanisms
underlie also volatile memory dynamics in larger recurrent motifs that exhibit a suitable
inhibitory component (shutdown-counter) and may thus self-terminate memory. In general,
for larger motifs or several motifs embedded into a larger network, future work will need to
investigate two aspects, local memory function and broader network effects. Larger motifs or
networks may also hold the option for additional, potentially more advanced, functionality,
for instance into the direction of systematically correlated multi-bit parallel memory storage,
see also [13, 22].

We chose a standard leaky integrate-and-fire neuronal model [23–25] to keep the number
of defining parameters to the most essential ones. Nevertheless, the conditions to implement
such volatile memory circuit do not depend on the details of the neuronal model, but only
on whether a self-sustained spike-train can be initiated by an external signal and whether
the inhibitory feedback can promptly terminate such a spike-train. The results might thus
be viewed as conceptual and largely independent of the neuron model.

Departing in some measure from the biological paradigm, independent bits (motif states)
can be assembled to form larger sets of N motifs which combined have a large memory
capacity (2N ), as in traditional computers. While it is unclear if the animal brain may take
advantage of such combinatorial approach, bio-inspired computers can certainly make use of
it to complement functionality of a large class of spiking neural systems, thereby maintaining
information and processing completely within the spiking paradigm if desired.

Our minimal motif for volatile memory complements a variety of alternative dynamical
system models of neural and networked information processing systems [26–29]. In particular,
our model for short-term memory is a promising complement for approaches to computations
relying on simple (neural) logical gates or on symmetrical spiking neural systems [11–14].
To date, these systems transiently process information but cannot retain the result of a
computation, neither in the long- nor in the short-term, for example in (noisy) heteroclinic
networks [12] or, more generally, networks of unstable states [13]. Finally, we believe that
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such alternative and compact form of volatile memory implementation may contribute to
future computing architectures, e.g., in neuromorphic and bio-inspired chemical, physical
and robotic systems [30–33].

ACKNOWLEDGEMENTS

Partially supported by the German Research Foundation (Deutsche Forschungsgemeinschaft,
DFG) under project number 419424741 and under Germany’s Excellence Strategy – EXC-
2068 – 390729961 – Cluster of Excellence Physics of Life at TU Dresden, and the Saxonian
State Ministry for Science, Culture and Tourism under grant number 100400118.

[1] P J Fortier and H E Michel. 1 - introduction. In P J Fortier and H E Michel, editors, Computer
Systems Performance Evaluation and Prediction, pages 1–38. Digital Press, Burlington, 2003.

[2] J J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982.

[3] F S Neves and M Timme. Bio-inspired computing by nonlinear network dynamics—a brief
introduction. Journal of Physics: Complexity, 2(4):045019, 2021.

[4] J Hertz, A Krogh, and R G Palmer. Introduction to the Theory of Neural Computation.
Westview Press, 1991.

[5] A C C Coolen, R Kühn, and P Sollich. Theory of Neural Information Processing Systems.
Oxford University Press, 2005.

[6] G W Burr, R M Shelby, A Sebastian, S Kim, S Kim, S Sidler, K Virwani, M Ishii, P Narayanan,
A Fumarola, et al. Neuromorphic computing using non-volatile memory. Advances in Physics:
X, 2(1):89–124, 2017.

[7] R M Shiffrin. Short-term memory: A brief commentary. Mem. Cogn., 21:193–197, 1993.
[8] O Barak and M Tsodyks. Working models of working memory. Current Opinion in

Neurobiology, 25:20–24, 2014.
[9] D O Hebb. The Organization of Behavior: A Neuropsychological Theory (1st ed.). Psychology

Press, 2002.
[10] J J Langille and R E Brown. The synaptic theory of memory: A historical survey and

reconciliation of recent opposition. Frontiers in Systems Neuroscience, 12, 2018.
[11] P Ashwin and J Borresen. Discrete computation using a perturbed heteroclinic network. Phys.

Lett. A, 374(4–6):208–214, 2005.
[12] J Wordsworth and P Ashwin. Spatiotemporal coding of inputs for a system of globally coupled

phase oscillators. Phys. Rev. E, 78:066203, 2008.
[13] F S Neves and M Timme. Computation by switching in complex networks of states. Phys.

Rev. Lett., 109(1):018701, 2012.
[14] F S Neves and M Timme. Reconfigurable computation in spiking neural networks. IEEE

Access, 8:179648–179655, 2020.
[15] C R Laing and C C Chow. Stationary bumps in networks of spiking neurons. Neural Comput.,

13(7):1473–94, 2001.
[16] Y Sandamirskaya. Dynamic neural fields as a step toward cognitive neuromorphic architectures.

Front. Neurosci., 7, 2014.
[17] R E Mirollo and S H Strogatz. Synchronization of pulse-coupled biological oscillators. SIAP,

50(6):1645–1662, 1990.
[18] D Hansel, G Mato, C Meunier, and L Neltner. On numerical simulations of integrate-and-fire

neural networks. Neural Computation, 10(2):467–483, 1998.
[19] M Timme, T Geisel, and F Wolf. Speed of synchronization in complex networks of neural

oscillators: Analytic results based on random matrix theory. Chaos, 16:015108, 2006.
[20] S Mishra, N K Singh, and V Rousseau. Chapter 3 - generic soc architecture components. In

S Mishra, N K Singh, and V Rousseau, editors, System on Chip Interfaces for Low Power
Design, pages 29–51. Morgan Kaufmann, 2016.

[21] C Tetzlaff, C Kolodziejski, M Timme, M Tsodyks, and F Wörgötter. Synaptic scaling enables
dynamically distinct short-and long-term memory formation. PLoS Computational Biology,
9:e1003307, 2013.



10

[22] W Maass, P Joshi, and E D Sontag. Computational aspects of feedback in neural circuits.
PLoS Comput Biol, 3(1):e165, 2007.

[23] R B Stein. A theoretical analysis of neuronal variability. Biophysical Journal, 5(2):173–194,
1965.

[24] B W Knight. Dynamics of encoding in a population of neurons. The Journal of general
physiology, 59(6):734–766, 1972.

[25] C Teeter, R Iyer, V Menon, N Gouwens, D Feng, J Berg, A Szafer, N Cain, H Zeng,
M Hawrylycz, et al. Generalized leaky integrate-and-fire models classify multiple neuron types.
Nature Communications, 9(1):709, 2018.

[26] P Ashwin and M Timme. When instability makes sense. Nature, 436:36–37, 2005.
[27] M Rabinovich, A Volkovskii, P Lecanda, R Huerta, H D I Abarbanel, and G Laurent. Dynamical

encoding by networks of competing neuron groups: winnerless competition. Phys. Rev. Lett.,
87(6):068102, 2001.

[28] M I Rabinovich, P Varona, A I Selverston, and H D I Abarbanel. Dynamical principles in
neuroscience. Reviews of Modern Physics, 78(4):1213, 2006.

[29] M Lukoševičius and H Jaeger. Reservoir computing approaches to recurrent neural network
training. Computer Science Review, 3(3):127–149, 2009.

[30] K O’Keeffe and C Bettstetter. A review of swarmalators and their potential in bio-inspired
computing. Micro-and Nanotechnology Sensors, Systems, and Applications XI, 10982:383–394,
2019.

[31] U Schilcher, J F Schmidt, A Vogell, and C Bettstetter. Swarmalators with stochastic coupling
and memory. In 2021 IEEE International Conference on Autonomic Computing and Self-
Organizing Systems (ACSOS), pages 90–99. IEEE, 2021.

[32] P S Smelov, I S Proskurkin, and V K Vanag. Controllable switching between stable modes in
a small network of pulse-coupled chemical oscillators. Physical Chemistry Chemical Physics,
21(6):3033–3043, 2019.

[33] A Javanshir, T T Nguyen, M A P Mahmud, and A Z Kouzani. Advancements in Algorithms and
Neuromorphic Hardware for Spiking Neural Networks. Neural Computation, 34(6):1289–1328,
2022.


