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ABSTRACT The computation of rank ordering plays a fundamental role in cognitive tasks and offers a basic
building block for computing arbitrary digital functions. Spiking neural networks have been demonstrated
to be capable of identifying the largest k out of N analog input signals through their collective nonlinear
dynamics. By finding partial rank orderings, they perform k-winners-take-all computations. Yet, for any
given study so far, the value of k is fixed, often to k equal one. Here we present a concept for spiking
neural networks that are capable of (re)configurable computation by choosing k via one global system
parameter. The spiking network acts via pulse-suppression induced by inhibitory pulse-couplings. Couplings
are proportional to each units’ state variable (neuron voltage), constituting an uncommon but straightforward
type of leaky integrate-and-fire neural network. The result of a computation is encoded as a stable periodic
orbit with k units spiking at some frequency and others at lower frequency or not at all. Orbit stability makes
the resulting analog-to-digital computation robust to sufficiently small variations of both, parameters and
signals. Moreover, the computation is completed quickly within a few spike emissions per neuron. These
results indicate how reconfigurable k-winners-take-all computations may be implemented and effectively
exploited in simple hardware relying only on basic dynamical units and spike interactions resembling simple
current leakages to a common ground.

INDEX TERMS Analog computing, coupled oscillators, network dynamics, nonlinear dynamics, spiking
neural networks, winner-takes-all, heteroclinic dynamics.

I. INTRODUCTION
Rank ordering of signals plays a fundamental role in nat-
ural and artificial cognitive computations, in particular in
attention-related tasks [1]–[3] where a small set of relevant
information must be computed in real time from an array of
sensory inputs. Natural environments present a continuous
stream of concurrent analog signals that often are simulta-
neously time-dependent, multi-modal and high-dimensional.
Yet such complex signals typically provide a basis for discrete
decisions.

Partial rank ordering, determining a subset of strongest
signals by comparing a variety of inputs, offers a fundamental
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option for providing a discrete judgment. Finding the largest
k out of a set of N analog inputs defines a k-winners-
take-all (k-WTA) computation, which networks of spiking
(formal) neurons have been shown to perform [4], [5] via
different approaches. While bio-inspired networks of pulse-
coupled neurons can compute one winner-takes-all (1-WTA)
functions via a combination of local excitation and longer
range inhibition [6], e.g. bump states [7] or dynamical neu-
ral fields [8], symmetrical networks of pulse-coupled neu-
rons or phase-coupled oscillators may compute more general
k-WTA functions exploiting complex periodic orbits akin
to heteroclinic dynamics [5], [9]–[16]. Moreover, a recent
study [17] also provides an actual simple hardware imple-
mentation of aWTA neural-circuit with promising scalability
via careful network design, also a mix of excitation and
inhibition.
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FIGURE 1. Reconfigurable k-winners-take-all computation in a schematic
network of spiking neurons. Tuning one global parameter, the coupling
strength ε, selects k . A vector ξ , with ξ1 > ξ2 > ξ3 > · · · > ξN (gray
arrows) serves as an input to a network of spiking neurons (black circles)
that dynamically computes a 2-WTA function of the input vector ξ . Only
those neurons receiving the largest two inputs send spikes whereas
spikes from all other neurons are dynamically suppressed.

In all these studies, however, either the number of
winners k is fixed, hard to design, thus not easily
(re)configurable, or computations typically take many spikes
per unit or both [5], [10]–[12], [14], [16], [18], [19]. Here,
we propose a class of spiking neural network models that not
only computes fast, in as few as k spikes under ideal condi-
tions (no noise and all starting from the same voltage), but
moreover provides intrinsic (re)configurability via changes
to a single global parameter to perform k-WTA computations
for different k , see Fig. 1 for a schematic illustration.

We thus present a system that is directly (re)configurable
by setting a single parameter to different values in order to
directly switch between different well-defined computational
tasks. Such reconfiguration is in stark contrast to learning
processes in neural networks during which many parameters
(coupling weights) evolve in a self-organized way to adapt
the system to become capable of solving a given task.

II. SPIKING NEURAL NETWORKS WITH
PROPORTIONAL INHIBITION
We consider a network of N spiking neurons that are oscilla-
tory, i.e. send spikes periodically in the absence of coupling
and external signals. The neurons’ continuous-time dynamics
is a singular type of integrate-and-fire neurons [20] and is
characterized by a one-dimensional phase-like variable as in
the generic model introduced in [21]. Each neural unit i ∈
{1, . . . ,N } exhibits a voltage-like state variable xi satisfying
the differential equations

dxi
dt
= Ii − γ xi + ξi(t)+ ηi(t)+ G(xi, t), (1)

where

G(xi, t) =
N∑
j=1

∑
tj,`∈Pj

g(xi)δ(t − tj,`), (2)

for xi ∈ [0, xθ ) where xθ is a spiking threshold. The
parameter Ii represents a constant current, γ is a dissipation
parameter, ξi an external signal serving as input and ηi(t)
represents an independent Gaussian white noise signal which

strength is completely determined by its signal variance σ 2.
Numerically, by definition, the noise contribution within any
given small time-interval 1t is a random real number with
zero mean and variance (1t)σ 2. Thus, one random number
is generated at each integration interval and summed to the
resulting voltage. To avoid numerically driven synchroniza-
tion, noise is added at randomly generated times [12], [22],
[23] (201 points per time unit per neuron) drawn indepen-
dently from a Poisson distribution. Whenever a threshold is
reached xi(t−) = xθ , the state variable is reset to xi(t) = 0
and a pulse (spike) is sent to all other neurons, mathematically
reflected in the time t = tj,` of the `th threshold crossing,
` ∈ Z, by the neuron j. Without loss of generality we fixed
xθ = 1. The sum in (2) is the contribution of all spikes
arriving from the other N − 1 neurons j to i at time t , where
Pj is the set of all times tj,` of spikes sent by neuron j.
We propose to design the coupling function g(xj), also known
as sensitivity function in the research field of coupled phase
oscillators [24], [25], to be state dependent such that it is
inhibitory with amplitude proportional to the voltage xi of the
receiving neuron at times t−j,`, i.e.

g(xi) = −εxi (3)

where ε < 1 is the coupling strength. As a consequence,
the larger the voltage xi, the larger the inhibitory effect of
a received spike signal. To the best of our knowledge, this
model setting has not been analysed or exploited for solving
computational tasks (via spiking neural networks).

For illustration, we here focus on networks with fixed
parameters γ = 1 and Ii = 1.04 =: I . We vary the
magnitudes of the input signals ξi(t) and the coupling strength
ε to select different k of the k-WTA computation by achiev-
ing different collective dynamics. Furthermore, as concrete
examples, we present networks of sizes N = 5 and N = 50
to emphasize different collective dynamics’ aspects and the
pulse-suppression mechanism’s independence of the network
size.

III. k-WINNERS-TAKE-ALL VIA PULSE-SUPPRESSION
How may spiking neural networks with pulse-suppression
perform k-WTA functions? Its overall dynamics is dictated
by a simple mechanism: every time a neuron reaches the
firing threshold, it emits a spike and inhibits all other neurons
proportionally to their voltages, thereby bringing their state
variables xi closer together, compare d2 to d1 in Fig. 2.
The neurons’ voltages xi do not synchronize identically in
finite time (unless they are initialized identically) because
any resulting voltage difference xi(t) − xi′ (t) is a positive
fraction (1− ε) of the original xi(t−)− xi′ (t−). Furthermore,
in the absence of external signals or noise, a neuron will
also never overtake another [21], [26]. This implies that all
neurons repetitively reach the threshold sequentially one after
the other and send a spike, see Fig. 3a. The order in which
they reach the threshold is determined by the ordering in
their initial condition, i.e. their voltages at time zero. Thus,
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FIGURE 2. Effect of inhibitory spike reception. The continuous time
evolution of state variables (voltages) xi (t) as a function of time t . Each
line represents the voltage of one neuron i . When some neuron j (dashed
line) reaches the threshold, xj (t−s ) = 1, it is reset, xj (ts) = 0, and a spike is
immediately sent to all other neurons. Because the spike response
strength is proportional to the voltage of receiving neurons
xi (ts) = xi (t−s )− εxi (t−s ), their voltages will be both decreased,
xi (ts) < xi (t−s ) and more strongly synchronized than before the spike
reception, i.e. d2 = (1− ε)d1 where d (t) = maxi,i ′ 6=j |xi (t)− xi ′ (t)|,
d1 = d (t−s ) and d2 = d (ts). Parameters for this illustration are N = 5 and
ε = 0.2.

all neurons will exhibit the same spiking frequency in the
absence of external signals and noise.
In the presence of noise (and still without external signals),

sporadic overtaking becomes possible. Some neurons may by
chance skip a spike emission (and a reset) due to inhibition.
These events are random and the average number of spikes
emitted by all neurons are still (almost) the same for any
sufficiently large time interval, thus assuming identical aver-
age frequencies in the theoretical limit of infinite observation
times.
The external signals ξi(t) that we define as inputs may

induce much richer and more interesting collective network
dynamics. If input signals with components of different inten-
sities are concurrently applied to all neurons, neurons exhibit
different intrinsic frequencies for the duration of the signal
and the faster neurons may repeatedly overtake others, see
Fig. 3b. As a result, some neurons may never reach the thresh-
old and deliver a spike, i.e. they will always skip their turn,
(Fig. 3b). We may thus interprete that the system evaluates
some aspects of the external continuous-time analog input
signal to make a decision about which spike emissions to skip
and which to keep. As we will show below, the system per-
forms a k-winners-take-all computation with k depending on
a combination of the network parameters and the magnitude
of the difference between input signal’s components.
Whether and how many neurons will skip their turn

depends on two factors – driving signals and coupling
strength. First, we observe that if neurons are driven with
input signals of different average values, neurons overtake
each other (Fig. 3b). If the input signals are constant in time,
the neurons i receiving the larger driving signals ξi exhibit
faster voltage changes and are thereby candidates for being

FIGURE 3. Dynamics of 2-winners-take-all computation via
pulse-suppression. The voltage and spike times for all neurons in the
network. Each curve represents the voltage dynamics of one neuron and
each dash represents the time of an elicited spike. (a) shows the
dynamics of all five neurons in the absence of external signals
(ξ (t) = (0,0,0,0,0)ᵀ) such that all units spike periodically and
sequentially. (b) Network dynamics when an asymmetric external signal
ξ (t) = (ξ1, . . . , ξ5)T with ξ1 > ξ2 > ξ3 > ξ4 > ξ5 is turned on. In the
presence of external signals only neurons 1 and 2 spike (periodically and
sequentially). Neurons 1 and 2 (blue curves) repeatedly overtake and
inhibit neurons 3, 4 and 5 (black curves). Thus promoting 2-wta via pulse
suppression. Parameters are ε = 0.5 and 1ξ = 0.02.

FIGURE 4. (Re)configurable choice of computational task. The computed
k depends on the differences 1ξ and the coupling strength ε. For a small
network of five neurons, we observed five different response regions in
the given parameter range: white, there is not ranking k = 5; computing
k ∈ {1,2,3,4} are represented by different shades of gray or black. For
any fixed input signal (horizontal value), a sorting type (k) can be
selected by changing the global parameter ε.

neurons with larger output spiking frequencies. We remark
that even if a neuron exhibits a fast change in voltages it
may not elicit any spike if inhibited, and the voltage is
lowered by means of leakage rather than spikes delivered to
the network. Details of their dynamics depend on how fast
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FIGURE 5. Monotonic decrease in computed k with increasing ε for a network of N = 50 neurons. Each dash represents the time
of one spike. For these simulations, inputs were fixed and linearly distributed between 0 and 0.003 (1ξ = 6× 10−5) and ε was
switched to a new value every 50 time units. The inset shows how k scales with ε.

(or if at all) the neurons driven more strongly can catch up
with more weakly driven ones ahead of them and overtake
these. Second, the coupling strength ε determines how close
all neurons’ voltage variables are squeezed together during a
spike reception.

Whereas the first factor, different rates of change dxi/dt
of the neurons’ voltages, provides a simple mechanism for
spreading the network voltages proportionally to their total
input current into N different voltage values, the effect of
inhibitory spikes is more convoluted. It has two aspects: first,
arriving spikes provide a synchronizing force for the group
of (N − 1) neurons concurrently receiving the spike (Fig. 2);
second, whether the voltage difference from a neuron j to the
spike-sending neuron i will increase or decrease depends on
the phase xj(t−s ) at the spike time and ε. For example, for
xj(t−s ) close to one (almost synchronized) most ε increase
the voltage difference |xi(ts) − xj(ts)| as xi(t−s ) → 0 and
thus decrease the degree of synchrony; on the other hand, for
initially large differences |xi(t−s ) − xj(t−s )|, where xj(t

−
s ) is

near 0, all ε would increase synchrony. Furthermore, large
values of ε provides a global synchronization force, e.g. if ε
is close to one all xj(ts) are close to zero independent of xj(ts).
Moreover, whereas the first factor (different dxi/dt) is acting
continuously in time, the spike interaction is only acting at
a discrete set of spike reception times. These observations
imply that an intricate interplay of overall spiking frequency,
differences in input signal strengths and coupling strength
determines which type of output spike pattern results and how
many neurons spike in the presence of a given input signal.

To quantify the contribution of these two factors, we sim-
ulate a system of N = 5 neurons varying the global coupling

strength ε and the degree of separation of input signal compo-
nents. Specifically, we generate temporally constant signals
of the form

ξi = (N − i)×1ξ, i ∈ {1, . . . ,N }, (4)

where1ξ is a constant that characterizes the input signal. The
smallest input difference between any two inputs therefore
equals 1ξ . For all other system parameters fixed as above,
we find that the system is capable of computing any given k ,
that is k ∈ {1, 2, 3, 4, 5} neurons spiking repeatedly whereas
N − k neurons remain silent without spikes. Fig. 4 shows
that for a single parameter ε, the system will perform the
same computation for a broad range of input differences1ξ .
Furthermore, for the entire range of1ξ considered the system
can compute k-WTA for all k ∈ {1, . . . , 5}, depending on the
coupling strength ε. The computation is thus reconfigurable
in this sense. We remark that ε needs to be sufficiently large,
otherwise no neuron is capable of overtaking another and thus
k = 5, i.e. no ranking is performed. Finally, in Fig. 5 we
present a larger network example with N = 50. As expected,
we found that the mechanism described above applies in
the same manner, and the global parameter ε controls the
computed k . Specifically, k decreases monotonically as ε
increases. Furthermore, every k ≤ N is in principle possible
for sufficiently well-tuned ε.

As the voltages of many neurons may approach the thresh-
old almost at the same time, see Fig. 3, it is important to
understand the concurrent effect of noise and input signals.
We here consider a Gaussian white noise signal and inputs
as in (4) for a N = 5 network. In particular, we compute
which fraction of all spikes comes fromwhich neurons during
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FIGURE 6. Example of noise generating randomness in spike sequences and its stochastic effects. The system is set to compute
the k = 3 largest out of 5 inputs, as in (4). (a) For very small noise (SNR = 100), the system seems not affected by noise, as only
the three stronger inputs induce spikes in this sample; (b) as noise increases (SNR = 1), some predicted spikes are missed,
replaced by false positives; (c) strong noise (SNR = 0.01) generates a large number of false positives (spikes) and negatives,
rendering the computation more difficult. (d) The fraction of spikes sent from each neuron in relation to the total network’s
number of spikes for different SNRs (single sample) counted for t ∈ [0,2000]. Even though the number of false positives increases
with noise, the result of a computational task can still be solved via the average spike rate up to SNR = 0.01. For example, for
SNR ≤ 0.001 the system computes the wrong ranking and thus fails. Parameters used: N = 5, ε = 0.3 and 1ξ = 0.003.

a 3-WTA computation for different noise levels. To quantify
noise in our system we define a signal-to-noise measure as

SNR =
1ξ2

σ 2 , (5)

where sigma is the standard deviation of the Gaussian signal
and 1ξ characterizes our signal strength as in (4). Let us
consider the limiting cases first: in the absence of noise
(σ 2
→ 0), we expect that the two neurons subject to the

weaker inputs would not elicit any spike while the other
three neurons exhibit the same fraction (≈ 33%) of spikes;
for strong noise (σ 2

� 1ξ ), we expect that most of the
information about the input is lost, thus all neurons contribute
roughly with the same ≈ 20% of elicited spikes. As shown
in Fig. 6, our numerical results corroborate those predictions.
Furthermore, as the signal to noise ratio (SNR) is reduced,
the previously silent neurons start to send a fraction of the
spikes inversely proportional to the SNR. This is particularly
interesting, because it shows a form of robustness, that the
computation can still be achieved up to SNRs approximately
0.01 (Fig. 6d), if the system computes with the average
number of spikes, for example by imposing a threshold on
the firing rates as a readout.

So far, we have shown that the system introduced above is
(re)configurable and how it responds to noise. Adjusting the
coupling strength selects some k for a k-WTA computation
via changes in the spike rates. A fundamental feature of
spiking systems it that a major part of consumed power is
due to spike generation, i.e. the smaller the number of spikes
the smaller the power consumed. Let us now briefly estimate
how many spikes our system requires to compute at different
SNR.

The number of spikes n∗ required to rank the driving
current from a pair of neurons, say i and j depends on how
fast their individual numbers of generated spikes ni(t) and
nj(t) diverge as function of time. Specifically, the difference
1nij(t) = ni(t) − nj(t) encodes the rank result in its mag-
nitude and sign, e.g. 1nij(t) > 0 suggests that ξi > ξj
and 1nij(t) < 0 indicates that ξi < ξj. We remark that
the sign of 1nij(t) alone is not enough to determine which
neuron received the stronger input, due to variability caused
by noise and initial conditions. We thus numerically estimate
an expected failure rate function F(σ,1ξ, n(t)) measuring
how often1nij(t) indicates either the wrong signal order, e.g.
1nij(t) > 0 for ξi < ξj, or is inconclusive (1nij(t) = 0) after a
total of n(t) network spikes, calculated over 500 simulations
per parameter set. The minimum number n∗ of spikes from
the whole network to compute the partial rank order with an
acceptable failure rate δ, noise standard deviation σ and input
amplitude 1ξ , is then estimated as

n∗(σ,1ξ, δ) = min{n′ |F(σ,1ξ, n) < δ for all n > n′}.

(6)

The quantity n∗ thus define the minimum (total) number
of spikes after which the failure rate will never exceed δ
afterwards within a much larger number of spikes, interval
[0, 2000].
As an example, we consider a N = 5 network set to

compute a 3-WTA ranking over five inputs chosen as in (4).
In this experiment k = 3 is known and we are interested on
comparing the three winners to the two losers. Among those
comparisons the smallest difference among input strengths is
ξ3 − ξ4 = 1ξ , between neurons 3 and 4. Their difference
in spike frequency determines the overall computing time
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FIGURE 7. Number of spikes required to compute with a coupled and an uncoupled systems. (a) For small SNR, the coupled
system computes with few spikes, consistent across different input magnitudes and fixed SNR, thus is robuts against 1ξ changes.
(b) the uncoupled system requires a large variety of number of spikes (n∗) for the same SNR, depending on the input strength
(results for coupled system in green). Because all N = 5 neurons have similar spike frequencies, an oscillation with period close to
5 is observed, as 1nij has a larger probability to be zero for all i, j pairs at times in which n(t) is a multiple of five (one spike per
unit). Deviations on this period are cause by spike frequency variability (overtakes). (c) The coupled system consistently exhibits a
smaller number of spikes and a smaller variation at the same SNR when compared to the uncoupled system. At small SNRs and
ideal initial conditions (Vi = 0 for all i ), in red, only the absolute minimum number of spikes 3 (n=k) is required. Parameters used
are ε = 0.3 and δ = 0.002.

because it dictates the longest relevant computing time in the
process. Notice that the in-group differences are irrelevant
for the desired computation. Moreover, the in-group rankings
may take longer than determining the three stronger inputs
and not possible to compute for large SNRs. For reference,
we compare our results to a set of independent integrators.
For clarity, we consider the exact same model of neurons
described above, but now uncoupled, thus stressing the com-
putational aspects provided by the network dynamics rather
than model specific features.

Let us first consider the limit case of no noise (σ → 0)
and an ideal initial condition where all neurons start at the
same voltage Vi(0) = 0. In this limit, in the coupled system,
neuron 4 does not spike and the number of spikes to compute
is simply n = 3, one spike from each winner, and decoding
the resulting spike trains reduces to detecting the first three
spikes. On the other hand, the number of spikes to compute
with the uncoupled system is proportional to1ξ and is given
by the n(t) in which |1n34(t)| > 2, with no actual limit
to how large the number of spikes may become (minimum
of 2). In the other extreme limit of very large noise, 1n34(t)
is approximately a discrete random walk with step size one
and zero mean, thus no computation is performed in either
system.

More interestingly, Fig. 7 illustrate the intermediary cases
where noise may (or may not) promote spike variability on all
five neurons. In particular it shows how the number of spikes
needed to compute scales with the SNR in both coupled

and uncoupled systems. We found that not only the coupled
system consistently computes with less spikes across a broad
range of SNRs but also exhibits a small variability when the
input magnitude is varied (Fig. 7a). Furthermore, for ideal
initial conditions, Vi(0) = 0 for all i, the coupled system com-
putes with the absoluteminimumnumber of spikes n∗ = 3 for
SNR ≥ 25. In contrast, the uncoupled system (Fig. 7b) does
not exhibit a predictable number of spikes n∗ to compute as a
function of the SNR, as it is also a function of the input signal
differences1ξ , and presents a spike response variability with
orders of magnitude of difference for the same SNR (Fig. 7c).
In practice, given an interval of possible SNRs and input
strengths, the largest estimated n∗ should be chosen as an
effective number of spikes to finish a computation.

The increase in computing speed due to reduced noise
observed on the coupled system occurs because it is itself
computing the rank order as it goes, i.e. the neurons are not
only mapping the input strength to spike trains with different
frequencies but actively inhibiting other components in a self-
organized way. In summary, k-WTA by pulse-suppression is
computed with reasonably few spikes (3 ≤ n∗ ≤ 70, numeri-
cally estimated) if the SNR is kept relatively large ( ≥ 1) and
for SNR ≥ 25 only the absolute minimum number of spikes
n∗ = k is required, thus the computing time is only limited
by the neurons’ intrinsic spike frequency. As the mechanism
of self-organized pulse suppression is independent of both
model details and network size, these results should hold
qualitatively to other models and network sizes.
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IV. DISCUSSION
Our results show that fast-computing (re)configurable
k-WTA can be implemented by simple symmetrical sys-
tems of spiking neurons with only inhibitory interactions,
providing a versatile model capable of performing a vari-
ety of functions using the same underlying network struc-
ture. We believe our model bridges and complements a
variety of other approaches to k-WTA that trade versatility,
e.g. reconfigurability and/or simple topology, for specific
features as output stability and sensitivity to weak input
signals. For example Heteroclinic Computing [5], [19], [27]
offers sensitivity to arbitrarily small signals (up to the noise
level), because it relies only on unstable states, while neural
fields [8], [28] provide a soft-WTA with macroscopic sta-
bility (population dynamics) via short-range excitation and
long-range inhibition. Our model makes use of stable orbits
and can robustly compute in a given time over a broad range
of input magnitudes. Moreover, we expect the results on the
influence of noise to stay qualitatively the same across other
types of noise as long as they exhibit zero mean and exhibit
no long-term (power law) correlations. Such types would add
a bias proportional to the mean amplitude because noise is
simply integrated in-between pulse-events.

Due to its simplicity, our model may provide the basis
for novel hardware implementations. That is, our neuronal
model is one-dimensional and generic, thus has a variety
of well-established implementations, while the amplitude of
interacting spikes is simply proportional to the voltage of the
neuron receiving them, resembling a simple leakage of cur-
rent to a common ground. Furthermore, the network topol-
ogy employed is symmetrical, so it does not rely on any
specifically weighted or complex topological interactions.
We remark that system symmetry is not a necessary condition
for such types of computations even though our theoretical
model represents ideal symmetrical components. Small varia-
tions in parameters, e.g. coupling weights and neuron spiking
frequencies, would add a bias to the results with strength
proportional to the given variations because after integration
all elements on the right-hand side of Equation (1) represent
simple currents.

As a versatile model capable of, in principle, performing
any k-WTA computation for a given network sizeN and using
only few spikes, it may be a good candidate for implement-
ing functionality on autonomous systems. Varying k means
that a small network is already capable of performing many
different functions while the low spike count may translate in
low power approaches to computation. Thus, our results may
potentially also contribute to the growing field of artificial
cognitive computing and related topics [28]–[35].
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