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Chapter 1

Introduction

Computation de�nes the way we interact with the world around us and constitutes
an important �eld of contemporary research. Although computation has di�erent
de�nitions, one of its general aspects is the capability to interpret and process
information. Systems with such capabilities can be implemented in hardware as
di�erent as digital computers, mechanical machines and biological systems. De-
pending on the nature of the implementation, di�erent computational paradigms
are expected to arise. Whereas digital processors are designed to implement se-
quential bitwise operations, complex systems such as biological or arti�cial neural
networks present a variety of non-trivial collective dynamics related to memory and
cognition [1�6].

Complex systems constitute a broad class of systems particularly promising for
the discovery and design of new computational paradigms [7�10]. A complex system
can be de�ned in general as a collection of interactive components restricted to a
certain topology. Such systems may present unpredictable collective dynamics even
if the dynamics of each single component is well characterized. Thus, such systems
have computational features of two di�erent levels, one regarding its components
(that could be complex systems by themselves) and another regarding its collective
dynamics. Often the focus of interest lies on the collective dynamics rather than
in modeling its components. In these cases di�erent levels of abstraction may be
implemented in its components and interactions in order to simplify the problem
mathematically, while isolating the features responsible for the dynamical behavior
of interest.

Networks of pulse-coupled elements are complex systems handling information
in the most powerful computer known to date �the human brain. Neuronal circuits
are networks of non-linear elements (neurons) that interact via electrical signals.
A neuron receives input pulses and, depending only on its internal potential (local
information), may itself release a pulse depending on well described non-linear pro-
cesses. Furthermore, it is believed that complex behavior arising in these networks
should not depend on the speci�c form of the generic non-linearity but on the very
presence of non-linearities and on the network topology. This is one of the reasons
why the study of idealized neuronal models and/or small networks are powerful
tools to better understand complex behaviors present in a broader class of complex
systems.

9



10 CHAPTER 1. INTRODUCTION

Pulse-coupled oscillators are neuronal models that, even though highly simpli-
�ed, keep characteristic features of biological neurons [11]. A biological neuron
when constantly charged by an external current exhibits a slow monotonic increase
of its membrane potential until it reaches a threshold value. When this happens,
there is a sudden and fast increase of the potential, followed by a relaxation to its
rest value (action-potential). Pulsed-coupled oscillator models consist of threshold
elements that are driven monotonically from one initial phase (rest potential) to a
threshold and then instantaneously reset to an initial phase. Note that while the
slow processes in those elements are similar, the fast dynamics related to the action-
potential is replaced by a simple reset in the oscillator model. This is motivated by
the di�erence of magnitude in the time taken by these two main processes involved
in the neuronal dynamics. Furthermore, pulses that are dynamically generated
in real neurons are postulated to be released at the reset times in the oscillator
model. A further simpli�cation may be made, when assuming that the width of
the postsynaptic response to an incoming pulse is much smaller than the oscillator's
intrinsic period, idealizing the pulses to delta-pulses. Thus one pulse delivers an
instantaneous phase jump to connected oscillators. This last simpli�cation yields
an analytical event-based computation of the system dynamics [12], avoiding nu-
merical error and increasing the speed of simulations.

Networks of pulse-coupled oscillators have been successfully used to investi-
gate mechanisms underlying dynamical phenomena in biological systems such as
synchronization and desynchronization of network components that constitute the
basis for a variety of collective dynamics with di�erent complexities, conceptually
responsible for encoding and processing information in those systems. The com-
plexity of synchronous states can be characterized by its cyclic order. The simplest
class is given by period-one states, where all elements must elicit one pulse before
a second pulse is elicited by any component of the network. Its most well-known
examples are fully synchronized [12, 13] and phase-locked states [14]. More com-
plex states are achieved for cycles of higher order. Other examples of complex
collective phenomena are asynchronous states and partial synchronization [15, 16].
Simpli�ed models such as pulse-coupled oscillators, thus, may constitute important
tools for the study of new collective dynamics.

It was shown in recent works that providing delayed interactions to systems
with symmetry [17, 18] may support heteroclinically connected saddle periodic
orbits (partially synchronized states). A heteroclinic connection in a dynamical
system is a distinguished trajectory that links two saddles in state space. It occurs
if unstable directions of one saddle are contained in the stable manifold of a second
saddle. A sequence of such connections linking several saddles cyclically is called
a heteroclinic cycle. Their relations to symmetry make heteroclinic cycles of high
current interest mathematically [17�23]. Simultaneously, their speci�c dynamical
feature, supporting repetitive switching close to the saddles, poses a promising
challenge for the study of information encoding and computation, in particular in
bio-inspired systems [5, 6, 10, 15, 16, 24�26].

For instance, it becomes more and more clear how information may be encoded
by systems with heteroclinic cycles [3, 6, 27]. Recent studies have even provided
insights about how external perturbations may be processed [8, 10, 28], providing
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hints on how such systems may actually compute using switching among saddles.
Nevertheless, it is still unclear whether and how biologically inspired neural systems
may actually perform generic computations using switching trajectories.

In this thesis we investigate this new computational paradigm, i.e. how control-
lable switching trajectories may be exploited for computation. Our results yield
a theoretical basis for universal computation in biologically inspired systems and
a novel concept of arti�cial short-term memory, consistent with current views on
working memory in the brain.

This work has three main parts divided into nine concise chapters: the �rst part
is introductory. It is composed of this brief introduction, Chapter 2 and Chapter 3.
Together they provide the context (Chapter 1), all fundamental de�nitions neces-
sary for a better understanding of the following chapters (Chapter 2) and introduce
the model class of pulse-coupled neurons on which we focus this study (Chapter
3). In the second part we derive the theoretical basis for computation by persis-
tent switching processes (Chapters 4-6). In Chapter 4 we present our approach to
�nd and to characterize partially synchronized states. In Chapter 5 we present a
complete analysis of the stability properties for these states. In Chapter 6 we show
how information may be encoded by inducing limit cycles close to a heteroclinic
network. The third part is devoted to two di�erent applications (Chapters 7 and
8). In Chapter 7 we show how universal computation can be performed by ex-
ploiting heteroclinic cycles. Two examples of computation are provided. The �rst
consists of a two bits bitwise computer composed of �ve oscillators capable of per-
forming universal computation by encoding all basic logical operations (AND, OR,
XOR); as a second example we present an autonomous agent exhibiting spatially
distributed sensors that is capable of detecting and following a moving source �eld
by calculation the �eld gradient. In Chapter 8 we present a novel model for ar-
ti�cial short-term memory that exploits perturbed heteroclinic connections in the
presence of network asymmetries. As an actual example of short-term memory, we
provide a network architecture to memorize pictures with six bits colored pixels.
In Chapter 9 we summarize our results and discuss their implications.





Chapter 2

Fundamentals

This chapter provides the fundamentals necessary to better understand the follow-
ing chapters. Here, we introduce few de�nitions of orbits and saddles relevant to
this work.

2.1 Concepts of orbits and saddles

This work is focused in collective oscillatory dynamics arising in networks of oscilla-
tors. Thus, it is convenient to brie�y explain the adequate terminology in order to
avoid confusion with non-oscillatory systems. We �rst introduced the de�nitions in
the context of real-time dynamical systems, and second for discrete-time dynamical
systems.

2.1.1 Real-time dynamical systems

Consider a dynamical system with time evolution given by a ordinary di�erential
equation

ẋ = f(x), (2.1)

and its taylor expansion around a point x∗,

ẋ = f(x∗) + Jδx+O(δx2), (2.2)

where J is a Jacobian matrix at x = x∗ and O(δx2) denotes higher order terms.

Saddle Point. A saddle point is a �xed point x∗ satisfying f(x∗) = 0 that in
local stability analysis the Jacobian matrix J of the linear approximation ẋ = Jδx
exhibits no zero eigenvalue, at least one eigenvalue with positive real part and at
least one eigenvalue with negative real part.

Periodic Orbit. If ẋ = f(x) has a periodic solution x̃(t+ T ) = x̃(t) for all t, the
set Po = {x̃(t)|t ∈ <+} is called the periodic orbit representing such solution. The
minimum T satisfying this solution is called the period of the orbit.

13
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Saddle Periodic Orbit. A saddle periodic orbit is an orbit given by a periodic
solution x̃(t+ T ) = x̃(t) for all t that in Floquet analysis exhibits no zero Floquet
multiplier, at least one Floquet multiplier with real positive part and at least one
Floquet multiplier with negative real part.

Heteroclinic Connection. Given two saddle �xed points x′ and x′′. We say that
x′ is heteroclinically connected to x′′ if at least part of its unstable manifold ωu

x′ is
contained in the stable manifold ωs

x′′ of x′′.

Heteroclinic Cycle. A heteroclinic cycle is a collection of saddles and the hete-
roclinic orbits that cyclically connect them.

Heteroclinic Network. A heteroclinic network is a collection of heteroclinic cy-
cles. It can be represented by a graph in which all vertices are saddles and all
arrows are heteroclinic orbits.

2.1.2 Discrete-time dynamical systems

Consider a dynamical system with time evolution given by a map

xn+1 = g(xn), (2.3)

and its taylor expansion around a point x∗

g(x∗ + δx) = g(x∗) + Jδx+O(δx2), (2.4)

where J is a Jacobian matrix at xn = x∗. This equation can be rearranged as

g(x∗ + δx)− g(x∗) = Jδx+O(δx2) (2.5)

δg = Jδx+O(δx2). (2.6)

Thus, δg is the di�erence after one iteration xn+1 = g(xn) between two states with
close initial conditions x0 = x∗ and x′0 = x∗ + δx.

Saddle Point. A saddle point is a �xed point x∗ satisfying g(x∗) = x∗ that in local
stability the Jacobian matrix J of the linear approximation δg = Jδx exhibits no
eigenvalue equal one, at least one eigenvalue with real part larger than one and at
least one eigenvalue with real part smaller that one.

Periodic Orbit. If xn+1 = g(xn) has a periodic solution gn(x̃0) = x̃0, where g
n(x̃0)

represents the map g iterated consecutively n times with an initial state x̃0, the set
Po = {x̃m|m ∈ {0, ..., n−1}} is called the periodic orbit representing such solution.

Saddle Periodic Orbit. A saddle periodic orbit is a orbit given by a periodic
solution gn(x̃0) = x̃0 where n is the number of iterations that in Floquet analysis
exhibits no Floquet multiplier equal to one, at least one Floquet multiplier with
real part larger than one and at least one Floquet multiplier with real part smaller
than one.



Chapter 3

Symmetrically pulse-coupled

oscillators

In this work we study a class of systems known as pulse-coupled threshold units
in the special case where the units are constantly driven towards their thresholds
(exhibiting a periodic dynamics when not coupled). As shown by Mirollo and
Strogatz [12], given certain conditions their dynamics may be described in two
distinct, but equivalent, representations: either through numerical integration of
a potential-like variable or through analytical event-based maps. Throughout this
work we will use both approaches depending on the aspect to be studied. Whereas
stability properties and transition rules are studied in the event description, because
it yields an analytical approach (see Chapter 5), the analysis of induced cycles
(Chapter 6) and computation examples (Chapters 8 and 7) are evaluated in the
potential picture.

This chapter is divided into three sections. The �rst describes in a general
form both representations and discusses conditions of their equivalence. The sec-
ond describes mechanisms underlying synchronization in networks of pulse-coupled
oscillators. The third introduces the special case of Integrate-and-Fire oscillators
and de�nes a small network, in which we explain the phenomenon of persistent
switching and its implications for computation.

3.1 Network of pulse-coupled oscillators

We consider a network of N oscillators that are connected homogeneously all-to-
all without self-connections through delayed pulse-couplings. The state of each
oscillator i ∈ {1, . . . , N} at time t is speci�ed by a single phase-like variable φi(t)
[12, 15]. In the absence of interactions, its dynamics is given by

dφi

dt
= 1, 0 ≤ φi ≤ 1. (3.1)

When oscillator i reaches its threshold θ = 1, φi(t
−) = 1, its phase is reset to zero,

φi(t) = 0, and the oscillator is said to send a pulse (see Figure 3.1). Such a pulse
is sent to all other oscillators which receive this signal after a delay time τ . The

15
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incoming signal induces a phase jump

φi (t) = Hε(φi(t
−)) = U−1

[
U

(
φi(t

−)
)

+ ε
]
, (3.2)

Figure 3.1: Dynamics of two pulse-coupled oscillators. Sketch of the time evolution
of dynamic variables in both representations showing the one-to-one relation between
them, it is t1,2,3,4,5 = s1,2,3,4,5/TIF and τ = τs/TIF; a) an oscillator is continuously charged
and sends one pulse after reaching its threshold; b) a second identical oscillator, apart from
a phase/potential lag, receives the pulse and performs an instantaneous phase/potential
jump. While the coupling strength in the potential picture is �xed (ε), the e�ective
coupling Hε(φ−) − φ− in the phase picture adapts to maintain the equivalence between
the event sequences.

which depends on the instantaneous phase φi(t
−) of the post-synaptic oscillator

and the excitatory coupling strength ε > 0. The phase dependence is determined
by a twice continuously di�erentiable potential function U(φ) that is assumed to
be strictly increasing (U

′
(φ) > 0), concave down (U

′′
(φ) < 0), and normalized such

that U(0) = 0, U(1) = 1. As shown in [25, 26], this phase dynamics is equivalent
to the ordinary di�erential equations

dVi

ds
= f(Vi) + Si(s), (3.3)

where

Si(s) =
N∑

j=1
j 6=i

∑
k∈Z

εδ (s− τs − sjk) , (3.4)

is a sum of delayed δ-currents induced by presynaptic oscillators. Oscillator j sends
its kth pulse at time sjk whenever its phase variable crosses threshold, Vj(sjk) ≥ 1;
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thereafter, it is instantaneously reset, Vj(sjk) → 0. The kth pulse of oscillator
j is received by i after a delay τs. The positive function f(V ) > 0 yields a free
(Si(s) ≡ 0) solution Vi(s) := V (s) = V (s + T0) of intrinsic period T0. The above
function U(φ) is related to this solution via

U (φ) = V (φT0) , (3.5)

de�ning a natural phase φ by rescaling the time axis, t = s/T0 and τ = τs/T0.

Throughout this work we will represent the system state in both equivalent
forms, depending on the aspect to be studied. Whereas the stability properties are
analytically derived in the phase representation ( equations (3.1) and (3.2) ), the
study of induced cycles and computation examples are described in the potential
picture (equations (3.3) and (3.4) ). Figure 3.1 shows that the timing between
all relevant events are indeed equivalent between the representations (one-to-one
relation).

3.2 Synchronization mechanisms

In this work, we consider networks of generic pulse-coupled oscillators, biologi-
cally inspired neuronal models that present a monotonical increase of a phase-like
variable φ(t) towards a threshold θ, with a subsequent reset to an initial phase
φ(t+) → 0, where t is the time variable and t+ is the time immediately after an
event occurring at t (in�nitely close to t, from the right). In addition to this smooth
dynamics and reset condition, a second strong non-linearity takes place: the recep-
tion of pulses that deliver in�nitely fast phase jumps. These three characteristics
combined provide four types of local dynamical events related to (non-local) syn-
chronization and desynchronization, which we de�ne now.

Sub-threshold input signal event. An arriving pulse ρi from oscillator i at
time t is said to be a sub-threshold event to oscillator j if the resulting phase
φj(t

+) is smaller than a threshold θj of oscillator j.

Supra-threshold input signal event. An arriving pulse ρi from oscillator i at
time t is said to be a supra-threshold event to oscillator j if the resulting phase
φj(t

+) is equal or larger than a threshold θj of oscillator j.

Reset event. A reset event is a compulsory instantaneous phase change φi(t
+) →

0, that occurs each time φi(t) ≥ θi.

Synchronization by supra-threshold event. A synchronization by supra-threshold
event is said to occur for a pair of oscillators {i, j} if at any time t a supra-threshold
input signal occur simultaneously at i and j, such that initially di�erent phases
φi(t) 6= φj(t) become equal after the event: That is, φi(t

+) → 0 and φj(t
+) → 0,

and thus φi(t
+) ≡ φi(t

+).
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3.3 Integrate-and-Fire oscillators

In this work we focus in a neuronal oscillator model known as the leaky integrate-
and-�re oscillator [11]. It is a one-dimensional threshold model de�ned as

dVi

ds
= I − γVi + Si(s), (3.6)

where I is a driving current and γ is a dissipative factor. The interaction Si(s) is
given by (3.4).

From equation (3.6) we recognize

f(V ) = I − γVi, (3.7)

of the general form (3.1) and calculate the oscillator's intrinsic period

TIF =
1

γ
log

(
1− γ

I

)−1

. (3.8)

With equations (3.7), (3.8) and (3.5) we �nd the speci�c form of U(φ)

U (φi) = UIF (φi) =
Ii
γ

(
1− e−φiTIF

)
, (3.9)

that together with equation (3.1) completes our set of equation for both represen-
tations.

For the sake of clarity, we here focus on a small network already exhibiting
a rich switching dynamics, a globally coupled network of N = 5 oscillators. This
choice makes the system mathematically simpler, while it still exhibits a rich variety
of non-trivial dynamics as a complex network of heteroclinically connected saddle
periodic orbits (see Chapters 4 and 5). Although in principle this choice of network
size and model may seem restrictive, the results that follow are general with respect
to those two aspects. It was shown in [25] that unstable attractors are prevalent
in larger networks, enhancing the likelihood of �nding heteroclinic cycles. As a
concrete example, it was shown for N = 100 a persistent switching among states
with cluster symmetry S21×S21×S21×S21×S16. Regarding the oscillator model,
any U(φ) su�ciently close to UIF(φ) brings qualitatively the same results because,
as will be shown in the following chapters, the phenomenon of controllable switching
will depend rather on the properties of heteroclinic cycles than on the exact slope
of V .



Chapter 4

Periodic orbit dynamics and

clustered states

This work is focused on the study of spatiotemporal patterns arising in networks
of pulse-coupled oscillators. As shown in the previous chapter, when a constant
external input Ii to a single oscillator i is su�ciently strong to drive the membrane
potential to cross a prede�ned threshold (U

′
> 0), the potential dynamics, and

thus the phase dynamics, becomes periodic with period T0. Therefore, networks
of such oscillators exhibit di�erent invariant sets in the form of periodic orbits [15,
21, 25, 29]. It was known before that, provided delayed connections, such networks
exhibit partially synchronized states, periodic orbits where groups of oscillators
are identically synchronized into clusters, and may support a persistent switching
between unstable yet attractive orbits through heteroclinic cycles. In this work
we will often refer to the clustered states by its symmetry, where each cluster
contributes to the total symmetry with a permutation group Sn, where n is the
number of elements in the cluster. In this section, we identify and characterize
three distinct partially synchronized states that robustly occur for a network with
N = 5 oscillators.

To explore the possible unstable periodic orbits we systematically varied the

(a) (b) (c)

Figure 4.1: Diagrams of three main clustered states. Sketch of three globally
coupled networks with N = 5 presenting three distinct clustered states. Each color label
one clusters. Equivalent states can be achieved by node permutations. a) Displays one of
the 10 possible S3×S2 states; b) displays one of the 5 possible S4×S1 states; c) displays
one of the 30 possible S2 × S2 × S1 states.
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network parameters and initial conditions, and found numerically that three clus-
tered states present the most persistent state symmetries to perturbations (seems
to preserve the total symmetry). Two of these states are composed of two clus-
ters, with permutation symmetries S3 × S2 and S4 × S1, respectively; another one
is composed of two clusters and one single element, with permutation symmetry
S2×S2×S1. A graphical representation of those three states is displayed in Figure
4.1.

After de�ning numerically the most promising orbits, we derived analytical
event sequences (tables C.1, C.3, C.4 and C.6) that fully characterize each orbit.
For the symmetry S3 × S2, the resulting orbit is such that the event sequence is

ξ1 = (σ1, σ2, σ3)(ρ1, ρ2, ρ3, σ4, σ5)(ρ4, ρ5)(σ1, σ2, σ3) . . . , (4.1)

where each parentheses de�nes one given instant, σi represents a elicited pulse by
oscillator i and ρi represents the reception of a pulse elicited by oscillator i. In the
same way, the sequences de�ning the orbits with symmetries S4×S1 and S2×S2×S1

are respectively given by

ξ2 = (σ1, σ2, σ3, σ4)(ρ1, ρ2, ρ3, ρ4, σ5)(ρ5)(σ1, σ2, σ3, σ4) . . . , (4.2)

and

ξ3 = (σ1, σ2)(ρ
∗
3, ρ

∗
4, σ5)(ρ1, ρ2, σ3, σ4)(ρ5)(σ1, σ2) . . . . (4.3)

where the stars indicate that the event results from a pulse coming from the pre-
vious cycle. For each of these three cluster periodic orbits, the event sequence of
sending and reception of pulses fully de�nes the type of periodic orbit such that the
analytical conditions for existence of a family of such orbits can be directly read
from the detailed event sequences (Appendix C). In particular, these three families
of periodic orbits exist for an open set of parameters close to the three examples
numerically speci�ed in tables C.2, C.5 and C.7. The existence conditions for each
periodic orbit naturally imply that the phases of all oscillators return exactly to the
same value after a �xed period; at the same time, the prede�ned event sequence
must be kept. Figure 4.2 displays a graphical representation of three limit cycles
as a sequence of pulses and as a Poincaré section. For a visual representation of
the complete orbits in state space, please refer to Appendix A.

As shown in the event tables, the clusters persist synchronized at all times
after one periodic orbit is established (in the absence of perturbations) and each
oscillator elicit only one spike during one cycle. Thus, these orbits are uniquely
de�ned by a cluster-state vector that samples one single point over these orbits
(Poincaré section). Here we choose the point s′ such that V1(s

′) = 0, that yields a
vector

V(s′) = (0, V2(s
′), V3(s

′), V4(s
′), V5(s

′)), (4.4)

unique during one cycle. Equivalent vectors are yield by the periodic condition,
V (s′) ≡ V (s′+nT ) with n = 1, 2, 3, . . . where T is the period of the orbit. In order
to simplify the notation, we now substituted the exact potential of each oscillator
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Figure 4.2: Clustered states in di�erent descriptions: V , φ and pulse sequences.Three
distinct limit cycles for a globally coupled networks with N = 5 displayed as Poincareh sections,
for both representations, and as a sequence of pulses. Each color correspond to one oscillator.
a) Displays one of the 10 possible S3 × S2 states, oscillators {1, 2, 3} and {4, 5} are synchronized
(τ = 0.31, ε = 0.025, I = 1.04, γ = 1); b) displays one of the 5 possible S4×S1 states, oscillators
{1, 2, 3, 4} are synchronized (τ = 0.27, ε = 0.0015, I = 1.1, γ = 1); c) displays one of the 30
possible S2 × S2 × S1 states, oscillators {2, 3} and {4, 5} are synchronized (τ = 0.49, ε = 0.025,
I = 1.04, γ = 1).

at the moment oscillator number one is reset (σ1 event times) by a cluster label
Vi ∈ {a, b, c}, where a, b and c are cluster labels for the network elements (maximum
of three labels since we consider symmetries with two and three clusters); a denotes
an unstable cluster, b a stable cluster and c an isolated unit at a stable position.
In an equivalent phase representation, taking t′ such φ1(t

′) = 0 yields

φ(t′) = (0, φ2(t
′), φ3(t

′), φ4(t
′), φ5(t

′)), (4.5)

with the same label representation φi ∈ {a, b, c}. The actual values of {a, b, c} are
determined by the speci�c cluster symmetry and the representation chosen. Note
that there is no loss of generality by choosing to sample the orbit at V1(s

′) = 0.
Any other given point s′′ over the orbit (V1(s

′′)) or other choice of oscillator (Vi with
i 6= 1) yields an equivalent vector with di�erent values of {a, b, c}. In particular, all
states with cluster symmetries S3 × S2, S4 × S1 and S2 × S2 × S1 are represented
by the set of all permutations of the vectors:

V(s′) = (a, a, a, b, b) ⇔ φ(t′) = (a′, a′, a′, b′, b′) , (4.6)

V(s′) = (a, a, a, a, b) ⇔ φ(t′) = (a′, a′, a′, a′, b′) , (4.7)

V(s′) = (a, a, b, b, c) ⇔ φ(t′) = (a′, a′, b′, b′, c′) , (4.8)

where each vector element on the right hand side of each equality represents one
oscillator and the letters indicate to which cluster it belongs. Here {a′, b′, c′} were
used instead of {a, b, c} to emphasize that the values denoted by the labels are
di�erent for each representation. As mentioned above, the actual values of {a, b, c}
depend also on the symmetry of the state. The number of permutation-equivalent



22 CHAPTER 4. PERIODIC ORBIT DYNAMICS AND CLUSTERED STATES

con�gurations for each state symmetry is given by the number of permutations of
the vectors presented above, which results in(

5
3

)
= 10, (4.9)

equivalent states for the symmetry S3 × S2,(
5
4

)
= 5, (4.10)

states for the symmetry S4 × S1 , and(
5

2, 2

)
= 30, (4.11)

states for the symmetry S2 × S2 × S1.

In summary, these results suggest that for N = 5 three distinct cluster peri-
odic orbits exhibits the most promising features to sustain a persistent switching
dynamics. Analytical descriptions of each orbit are given by event sequences and a
cluster-state vector has been introduced. In the next chapter, we study the stabil-
ity of these cluster states and the possible state transitions when subject to small
perturbations.



Chapter 5

Nonlinear dynamics of controlled

switching

In this chapter we study, case by case, the stability of the periodic orbits presented
in the last section and show that they present unstable and stable manifolds. We
�rst show that the orbits are unstable by a local stability analysis and later, by
studying the long term e�ect of perturbations, we show that these orbits are at-
tractive, such that the basin of attraction of one orbit lies in the vicinity of other
orbits. Furthermore, we provide general transition rules between clustered states
with symmetry S2 × S2 × S1. The content of this chapter was published in the "J.
Phys. A: Math. Theor., vol. 42, 2009."

To study the local stability of these attractors, we introduce a perturbation
vector,

δ(n) = (δ2(n), δ3(n), δ4(n), δ5(n)) , (5.1)

that has four components, since only the relative phases among the oscillators are
relevant. The analysis presented here consists of a study of the temporal evolution
of this perturbation vector at each cycle. Thus,

δi(n) := φi(t1,n)− φ∗i (t1,n) (5.2)

are the perturbations to phases on the periodic orbit just after oscillator one has
sent its nth pulse and been reset, i.e. δ1 ≡ 0.

After a small enough initial perturbation that is added to the phase vector
at t = t1,1, the temporal evolution of the perturbation vector is de�ned as the
di�erence between this perturbed vector after one cycle of the system dynamic and
the unperturbed phase vector at the same time. Analytically tracking the periodic
orbit dynamics (cf. tables D.1, D.2, and D.3) yields the perturbation vector after
one cycle as a function of the perturbation in the previous cycle,

δ(n+ 1) = F (δ(n)) , (5.3)

which can be linearly approximated by

δ(n+ 1)
.
= Jδ(n), (5.4)

23
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where J is the Jacobian matrix at δ(n) = 0, describing the local dynamics.

After analyzing the local stability properties, we study non-local e�ects in re-
sponse to single oscillator perturbations in order to reveal the attractive aspects
of the periodic orbits. The procedure consists of perturbing only one oscillator
at a time. We consider negative perturbations, instantaneous decrements on the
phase, and positive ones, instantaneous increments on the phase. When possible,
we include state-transition diagrams displaying all possible transitions.

5.1 Clustered state symmetry S3 × S2

For the clustered state S3 × S2, assuming δ2 < δ3, and δ4 < δ5, the temporal
evolution for the perturbation vector δ in one cycle is given by the di�erence
between the perturbed and the unperturbed orbits after one cycle (last row of
table D.1 and C.1, respectively), resulting in

δ(n+ 1) = F (δ(n)) = (δ2(n+ 1), δ3(n+ 1), δ4(n+ 1), δ5(n+ 1)) , (5.5)

with

δ2(n+ 1) = H2ε (Hε (Hε (δ2 + τ − δ3) + δ3) + τ − δ2)− p1,2 (5.6)

δ3(n+ 1) = H2ε (Hε (Hε (τ + δ3 − δ2) + δ2) + τ − δ2)− p1,2 (5.7)

δ4(n+ 1) = H2ε (Hε (δ2) + τ − δ2) + 1− p1,2 (5.8)

δ5(n+ 1) = H2ε (Hε (δ2) + τ − δ2) + 1− p1,2 (5.9)

where

p1,2 = H2ε (Hε (Hε (τ − δ3) + δ3 − δ2) + τ) (5.10)

Remember that H is the transfer function de�ned in (3.2).

These equations fully characterize the time evolution in one cycle. Now, to
study its local dynamics we perform a linear approximation of (5.5),

δ(n+ 1)
.
= Jδ(n), (5.11)

where the dynamics is dictated by the following Jacobian matrix:

∂δ(n+ 1)

∂δ(n)

∣∣∣∣
δ(n)=0

=


α 0 0 0
j21 β 0 0
γ j32 0 0
γ j42 0 0

 , (5.12)

with,

α =
[
−1 +

[
1 +H

′

ε(τ)
]
H

′

ε(τε)
]
H

′

2ε(τ + τ2ε) (5.13)

β =
[
−1 + 2H

′

ε(τ)
]
H

′

ε(τε)H
′

2ε(τ + τ2ε) (5.14)

γ =
[
−1 +H

′

ε(0)
]
H

′

2ε(τ + 0ε) +H
′

ε (τε)H
′

2ε (τ + τ2ε) (5.15)

j21 = −
[
1 +

[
−2 +H

′

ε(τ)
]
H

′

ε(τε)
]
H

′

2ε(τ + τ2ε) (5.16)

j32 = j42 =
[
−1 +H

′

ε(τ)
]
H

′

ε(τε)H
′

2ε(τ + τ2ε) (5.17)
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with the short notation

xy = Hy(x), (5.18)

for x ∈
{
0, τ, (τ − τ

′
), (τ − τ

′
+ τ

′
y)

}
and y ∈ {ε, 2ε, 3ε}.

Here α, β, and γ are positive reals larger than one, j32 and j42 are positive, and
j21 is much smaller than the other elements. This matrix has two zero eigenvalues
with eigenvectors that correspond to the directions of δ4 and δ5; and two non-zero
eigenvalues given by,

λ1 = α =
[
−1 +

[
1 +H

′

ε(τ)
]
H

′

ε(Hε(τ))
]
H

′

2ε(τ +H2ε(τ)) (5.19)

λ2 = β =
[
−1 + 2H

′

ε(τ)
]
H

′

ε(Hε(τ))H
′

2ε(τ +H2ε(τ)), (5.20)

where

H
′

ε(φ) =
∂

∂φ
U−1 (U(φ+ ε)) .

Here λ1 and λ2 are larger than one (see Lemma 1), noticing that all terms are
due to sub-threshold events. Thus a perturbation can e�ectively disturb the system
in two di�erent possible directions, showing that the cluster S2 is stable and the
S3 is unstable.

Lemma 1 If Hε(φ) given by (3.2) mediates a sub-threshold reception event and
ε > 0, U

′
(φ) > 0, and U

′′
(φ) < 0, then H

′
ε(φ) > 1.

Proof Assume ε > 0. By de�nition

H
′

ε(φ) =
∂

∂φ
U−1 (U(φ+ ε)) =

U
′
(φ)

U ′ (U−1(U(φ) + ε))
=

U
′
(φ)

U ′ (Hε(φ))
,

Since U
′
(φ) is a monotonic decreasing function and Hε(φ) > φ we have U

′
(φ) >

U
′
(Hε(φ)) for any Hε(φ), and consequently H

′
ε(φ) > 1.

Now we describe the long-term e�ect of a single oscillator perturbation to the
unstable cluster S3. A negative perturbation to one of the elements on the unstable
cluster (φ+ = (a, a, a− δ3, b, b)) puts one of its elements phases slightly behind;
then the initial stable cluster S2 begins to receive an additional pulse just after it
is reset, increasing its relative phase in each cycle, and thus approaches the phase
of the elements in the originally stable cluster. After some cycles it �nally joins
that cluster by a simultaneous reset, forming a new S3 × S2 clustered state. This
switching process is illustrated just after the second and fourth perturbations in
Figure 5.1. The �nal state has the same symmetry as the initial state but this time,
while the clusters themselves are stable, the orbit described by the new cluster S2 is
unstable (see table C.3). A further perturbation to the cluster S2 does not change
the elements of each cluster but rather returns the system to the initial phase
di�erence, as shown in the �rst, third and �fth perturbations in Figure 5.1.
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Figure 5.1: Switchings due to negative perturbations. Example of perturbation-induced
switching starting from a S3×S2 state. The response of the system to a sequence of �ve negative
single oscillator perturbations preserving a S3 × S2 clustered symmetry (τ = 0.31, ε = 0.025,
I = 1.04, γ = 1). The phases of all oscillators are plotted at the moment when oscillator one is
reset, each color representing the phase of one oscillator. There are transitions through two steps,
where in a �rst moment the cluster S3 is unstable, after one perturbation (as shown by the second
and fourth perturbation) it reaches a new con�guration with the cluster S2 in an unstable phase
position, a second perturbation (as shown in the �rst, third and �fth perturbations) is needed
to put the system in the initial phase di�erence again, maintaining the cluster components but
changing its stability. The symmetry of the unstable attractors are preserved. The sequence of
states given by the plateaus are (a, a, b, b, a)∗ → (a, a, b, b, a) → (b, b, a, a, a)∗ → (b, b, a, a, a) →
(a, a, a, b, b)∗ → (a, a, a, b, b), where the star indicate the states where S2 is in an unstable phase.

Intriguingly, positive perturbations (φ+ = (a, a, a+ δ3, b, b)) result in a com-
pletely di�erent dynamic, as can be seen in Figure 5.2 which presents a sequence
of three negative and two positive perturbations. A positive perturbation puts just
one oscillator from the unstable cluster ahead, increasing its phase in relation to
its original cluster in each cycle until it begins to be reset by pulses coming from
the originally stable cluster. The original S2 cluster changes its phase to conform
with this new pulse con�guration, but still has been reset by pulses coming from
the two elements left on the unstable cluster. Thus the S3 cluster splits into two
clusters, and the new con�guration becomes S2 × S2 × S1. A further perturbation
puts the system in a stable cyclic state.

Hence the symmetry S3 × S2 is not preserved upon a general perturbation.
however, simulations suggest that if we only consider negative single oscillator per-
turbations, or one negative perturbation with a larger magnitude than the others,
the symmetry is preserved, and it is possible to write a transition rule that permits
us to know which will be the next state after one perturbation.

Transition rule for cluster symmetry S3 × S2:

(a− δ1, a, a, b, b) → (a, b, b, a, a). (5.21)
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Figure 5.2: Switchings due to positive perturbations. Example of symmetry change by
perturbation-induced switching. A sequence of three negative and two positive single oscillator
perturbations (same parameters as in Figure 5.1). Showing that the positive perturbations splits
the unstable cluster until the system reaches some periodic orbit. The symmetry is not preserved.

Although the symmetry is not always preserved after perturbations, this result
shows that orbits with cluster symmetry S3×S2 are indeed attractors with at least
part of their attraction basin close to another symmetrically related orbit.

5.2 Clustered state symmetry S4 × S1

Consider now the S4 × S1 symmetry. Assuming δ2 < δ3 < δ4 and δ5 > 0, in an
analogous procedure as in the last section we obtain the following Jacobian matrix
(see last row of tables D.2 and C.4):

∂δ(n+ 1)

∂δ(n)

∣∣∣∣
δ(n)=0

=


α 0 0 0
j21 β 0 0
j31 j32 γ 0
j41 j42 θ 0

 . (5.22)

Here α, β, γ, and θ are larger than one, j41 and j42 are positive, and j21, j31, and
j32 are much smaller than the other elements (see Appendix B). This matrix has
one zero eigenvalue λ0 = 0, with the eigenvector in the direction of δ5. It means
that any perturbation in this direction is erased after one cycle. Furthermore, it
presents three non-zero eigenvalues given by

λ1 = α =
[
−1 +

[
1 +H

′

ε(τ)H
′

ε (Hε(τ))
]
H

′

ε (H2ε(τ))
]
H

′

ε (τ +H3ε(τ)) , (5.23)

λ2 = β =
[
−1 +

[
1 +H

′

ε(τ)
]
H

′

ε (Hε(τ))
]
H

′

ε (H2ε(τ))H
′

ε (τ +H3ε(τ)) , (5.24)

λ3 = γ =
[
−1 + 2H

′

ε(τ)
]
H

′

ε (Hε(τ))H
′

ε (H2ε(τ))H
′

ε (τ +H3ε(τ)) . (5.25)
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Figure 5.3: Switchings due to positive perturbations. Example of perturbation-induced
switching starting from a S4×S1 state. A sequence of four positive single oscillator perturbations
preserving a S4 × S1 clustered symmetry (τ = 0.27, ε = 0.0015, I = 1.1, γ = 1). The phases of
all oscillators are plotted each time oscillator one is reset. Each color represents the phase of one
oscillator. The perturbed oscillator leaves the cluster S4 and replaces the S1 oscillator that join
the cluster S4, preserving the symmetry. The sequence of states corresponding to the plateaus
are (a, a, a, a, b) → (a, b, a, a, a) → (a, a, b, a, a) → (a, a, a, b, a).

Using H
′
ε(φ) > 0 for all ε > 0 and all φ (see lemma 1), these three eigenvalues are

necessarily larger than one (λ1, λ2, λ3 > 1), showing the instability of cluster S4.

Again we study the e�ect of single oscillator perturbations. As can be seen
in Figure 5.3, positive perturbations to an element of the unstable cluster S4 put
one element from the unstable group ahead. This di�erence in phase will increase
each cycle, since pulses received at larger phases more strongly shift the oscillator's
phase; at the same time the S1 element is not only reset by the pulses arriving
from other oscillators, but also receives additional pulses that makes its phase to
approach the unstable cluster. After some cycles, the element S1 joins the original
unstable cluster, forming a new S4 cluster while the perturbed oscillator forms the
new S1, returning the system to its original phase di�erence and symmetry, but
with di�erent elements composing the clusters.

When a negative perturbation is applied (see Figure 5.4) the perturbed element
is put backwards, and, as before, the elements ahead increase the di�erence in
phase in relation to the perturbed element; at each cycle, after being reset, the
original S1 element receives an additional pulse coming from the perturbed element,
increasing its phase. After some cycles this increase makes the S1 element join the
perturbed element, forming a new cluster S2. The new con�guration becomes
S3 × S2, where S3 is unstable. A second perturbation to the S3 cluster moves the
perturbed element to the cluster S2. A last perturbation either puts the system
towards its initial con�guration or splits the cluster into two, depending on the
position on the periodic orbit to which it is applied. The symmetry of this state



29

Figure 5.4: Example of symmetry change by perturbation-induced switching due to
negative perturbations starting from a S4 × S1 state. A sequence of three negative single
oscillator perturbations to the initially S4 cluster for the same parameter used on Figure 5.3. The
perturbed oscillator joins the S1 oscillator, forming a S2 cluster, a second perturbations (to the
S3 cluster) yields an new S3 × S2 con�guration where S2 is unstable, and a last perturbation (to
the S2 cluster) puts the system in the initial symmetry. The symmetry is not preserved.

is obviously not preserved for negative perturbations, and computer simulations
indicate that more general perturbations bring an even more complicated switching
dynamic due the large number of elements in the unstable cluster.

Considering only single positive perturbations yields a transition rule between
two states when subject to a single positive perturbation.

Transition rule for cluster symmetry S4 × S1:

(a+ δ1, a, a, a, b) → (b, a, a, a, a). (5.26)

The resulting transition diagram is a fully connected one, and it is possible to
jump from one equivalent permutation state to any other one applying only one
perturbation.

Notice that, as in the last section, this transition rule implies that this cluster
periodic orbit is an attractor with at least part of its basin of attraction close to
an orbit with the same cluster symmetry.
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5.3 Clustered state symmetry S2 × S2 × S1

For the symmetry S2 × S2 × S1, assuming δ3 < δ4 and {δ2, δ5} > 0, we have the
following Jacobian matrix:

∂δ(n+ 1)

∂δ(n)

∣∣∣∣
δ(n)=0

=


α 0 0 0
β 0 0 0
β 0 0 0
γ 0 0 0

 , (5.27)

where α > β > γ > 0 (see Appendix B), in accordance with tables D.3 and C.4.
This matrix has three zero eigenvalues λ0 = λ1 = λ2 = 0, with eigenvector in the
direction of δ3, δ4 and δ5. This means that the system is super-stable in those
directions, and any perturbation is erased within one cycle. The largest and only
non-zero eigenvalue is given by

λ3 = α = H
′

ε

(
τ

′
+Hε

(
τ − τ

′
+H2ε(τ

′
)
))
×

×
[
−1 +H

′

ε

(
τ − τ

′
+H2ε(τ

′
)
) (

1 +H
′

2ε(τ
′
)
)]
, (5.28)

which is larger than one accordingly to Lemma 1 with a eigenvector in the direction
of δ2. The fact that there is only one eigenvalue larger than one and the eigenvector
align to one of the perturbation dimensions not only shows that there is only one
unstable cluster, but also that perturbations change only the di�erence in phase
between the two elements on this cluster. As a result, any general perturbation
can be mapped to a single oscillator perturbation.

Di�erent from the last two considered symmetries (S4 × S1 and S4 × S1), we
here have one single element, one stable S2 clusters, and one symmetric unstable
S2 cluster. When perturbed, the initial unstable cluster S2 splits into two, the ad-
ditional pulse received now by the initial single S1 element just after its reset makes
it approach the element that was put behind on the unstable S2 cluster, forming
a new stable S2 cluster. This occurs because it is reset by supra-threshold pulses.
Moreover the element ahead begins to be reset by pulses and stops increasing its
phase, becoming stable and the original stable S2 cluster after changing its phase,
is not reset by pulses anymore, becoming unstable. The �nal state has the same
symmetry and stability properties as the former state.

The preservation of the symmetry implies a closed transition diagram among
all the possible S2 × S2 × S1 states (see Figure 5.6). We state two simple and
equivalent switching rules.

Transition rule for cluster symmetry S2 × S2 × S1:

Considering �rst a positive representation we have

(a, a+ δ2, b, b, c) → (b, c, a, a, b) (5.29)

that can be rewritten for negative perturbations simply as

(a− δ1, a, b, b, c) → (b, c, a, a, b). (5.30)
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Figure 5.5: Example of perturbation-induced switching starting from a S2 × S2 × S1

state. A sequence of �ve perturbations driving the system through di�erent states with symmetry
S2×S2×S1 (τ = 0.49, ε = 0.025, I = 1.04, γ = 1). The phase of all oscillators are plotted at the
moment when oscillator number one is reset, each color representing the phase of one oscillator.
The apparent change of the phase di�erences among the clusters just after the perturbations
depends on the cluster to which the reference oscillator belongs. The symmetry of the unstable
attractors is preserved. The sequence of states corresponding to the plateaus is (a, a, b, b, c) →
(b, c, a, a, b) → (a, b, b, c, a) → (b, a, a, b, c) → (a, c, b, a, b) → (b, b, a, c, a).

Figure 5.6: Five steps state transition diagram for the symmetry S2 × S2 × S1. This
diagram shows all the possible 5 steps paths, sequence of states, beginning on the state {a,b,c,b,a}.
Each arrow corresponds to one of the two possible perturbations, subject to (5.29) and (5.30). It
is necessary to have at least 5 perturbations to reach the initial state again.
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We conclude that for this symmetry the unstable attractors are linked to form
a heteroclinic network, characterized by (5.29) and (5.30), forming a closed set of
saddle periodic orbits among which the systems switches in a controlled way upon
small external perturbations. We remark that in the absence of noise this dynamic
does not exhibit spontaneous transitions between nearby saddle states [5, 22], but
instead displays convergence to unstable attractors. The free dynamic of each
element evolves continuously up to reset; still, the collective dynamic of the entire
network (network state) evolves continuously almost always, only interrupted by
discrete jumps due to the in�nitely fast phase response of the interaction. As (i) the
transitions are fully controlled by external perturbations and thus predictable, and
(ii) the symmetry is preserved when the network is subject to su�ciently small,
general perturbations, arbitrarily small external noise would trigger a persistent
switching dynamic in which the network states are constrained to the closed set of
periodic orbits with initial S2 × S2 × S1 symmetry (see Chapter 6).

5.4 Conclusion

In this chapter we have shown that the three cluster periodic orbits introduced in
the last chapter are in fact unstable attractors, such that their basins of attraction
are far away, located in the vicinity of a distinct but speci�c attractor with the same
symmetry. In particular, for the cluster symmetry S2 × S2 × S1, the attractors
are heteroclinically connected to form a closed network, where the symmetry is
always preserved after a switching, yielding precise transition rules in this close
set of attractors for general perturbations. This controllable switching process [10]
underlies all computational properties presented in the following chapters. In the
next chapter we study how symmetry breaking input signals support stable periodic
orbits and show that these orbits are well-characterized by speci�c sequences of
unstable periodic orbits studied in this chapter.



Chapter 6

Noise-induced switching and

complex periodic orbits

In the previous chapter we de�ned the transition properties between saddle periodic
orbits arising in a symmetric network with N = 5. We �rst studied the local
stability of these periodic orbits and later the long term e�ect (convergence to
another saddle state) of directed perturbations. Here we study the e�ect of noise
and asymmetric driving forces on its dynamics, revealing its basic computational
properties. Although we address all three cluster symmetries, special attention is
paid to the S2 × S2 × S1 cluster symmetry, since it presents the most promising
computational features as the formation of a heteroclinic network and a transition
rule for general perturbations.

We argue here that the nature of small external signals added to an oscillator
(perturbations or asymmetric currents) is irrelevant for the transition rules during
one oscillator cycle, since any added quantity to the right side of the de�ning di�er-
ential equations of dynamical variables (φ,V ) cannot be distinguished from others
after temporal integration. Furthermore, the pulse-like interaction discussed until
now results in a non-interactive system for most of the time where the di�erence of
phases (or potentials) in a cluster is computed at discrete times {ti,k} (in the phase
picture), or equivalently at {si,k} (in the potential picture), where si,k = ti,kTIF .
Thus, these extra currents can be mapped into an e�ective perturbation at those
speci�c times.

We �rst study the e�ect of noise, highlighting the relation between the arising
transitions and the transition rules de�ned in the last chapter; second we show how
network asymmetries generate and control limit cycles and discuss their implica-
tions to neural computation.

6.1 Noise-induced switching

Here we show under which conditions and how noise triggers a persistent switching
process, whether the symmetries are maintained in such a process and how di�erent
noise intensities a�ect such switchings. To be speci�c, we assume a uniformly
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distributed noise given by

ν = (ν1, ν2, ν3, ν4, ν5), (6.1)

where the components are independent of each other.

Our analysis proceeds in three main steps. We �rst check for the existence of
a switching process by observing the time evolution of V when subject to noise;
second, if such a process is present, the resulting paths generated by the potentials
in the state space and the fraction of time spent close to di�erent regions in this
space are studied. These paths are depicted in a state space hyperplane as a three-
dimensional plot of the potentials V2,3,4(s1,k) of oscillators {2, 3, 4} in relation to
each other at all times {s1,k} (reset times of oscillator i = 1). The data set is
generated by noise-induced switchings during a period long enough to cover all
possible transitions. Due to the system symmetry, any group of three elements
from {1, 2, 3, 4, 5} or any other choice of referential oscillator, {si,k} for oscillator i,
yields an equivalent structure. Regarding the time factor, we �rst de�ne as points
of interest the saddle periodic orbits Pon described in Chapter 3, where n is the
saddle index. Then, we calculate the fraction of time spent at di�erent distances
from those attractors. Speci�cally, we measure at each time step the minimum
distance to a point Li contained in the set of all attractors (saddle periodic orbits)

dmin(s) = min{ min
Li∈Po1

{|V (s)− Li|}, . . . , min
Li∈Pon

{|V (s)− Li|}} (6.2)

where n is the number of saddles. Since the attractors themselves are periodic
orbits, the distance is �rst calculated as the minimum distance to a point over each
orbit, minLi∈Pon{|V (s) − Li|}, to then calculate the minimum of all results. Here
we approximate the periodic orbits to 283 chosen points over each orbit, equally
spaced in time during a noise-free dynamics.

6.1.1 S3 × S2 and S4 × S1 cluster symmetries

The simplest switching process is given by the S3 × S2 symmetry. As shown in
Figure 6.1 (a), after noise is introduced the unstable cluster S3 splits into three
and the �nal state becomes stable. Thus, no switching dynamics is achieved. This
result was expected, since single neuron perturbations show that a sequence of
positive single oscillator perturbations drive the system to the same stable state.

Interestingly, starting from a cluster state with S4 × S1 symmetry, a persistent
switching is achieved, even though single oscillator perturbations can lead to a
stable attractor depending on the moment during the periodic orbit at which it is
applied. Although no mathematical proof is given, long term computations suggest
that the multi-oscillator nature of the e�ective perturbation and the continuous
interaction with the noise prevents the convergence to the given stable state (see
Figure 5.2).

These results show how unpredictable the dynamics of similar system can
be when standard conditions are changed. One could expect that noise-induced
switchings would lead to a stable attractor for both symmetries, since single neuron
perturbations can lead to such states in both cases. However, on the contrary, a
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Figure 6.1: Noise-induced switching leading to a stable (a) and unstable attractors (b)
attractor. a) Example of noise-induced switching in a initial S3 × S2 state (τ = 0.31, ε = 0.025,
I = 1.04, γ = 1). The potential V of all oscillators are plotted at the times {s1,k}, oscillator
number one reset times. Each color represent one oscillator. Shortly after noise is introduced
(s = 200), the system switches to a stable attractor with symmetry S2 × S1 × S1 × S1. b)
Example of noise-induced switching in an initial S4 × S1 state (τ = 0.27, ε = 0.015, I = 1.1,
γ = 1). The potential V of all oscillators are plotted at the times {s1,k}, oscillator number one
reset times. Each color represents one oscillator. After noise is introduced (s = 200), a persistent
switching takes place, preserving the initial state symmetry. The dynamics do not converge to
the stable periodic orbit predicted by single-oscillator perturbations.

more general perturbation seems to prevent such transitions for the S4 × S1 sym-
metry, at least for a considerable period of time. The mathematical mechanism
that explains such an e�ect are still to be explained.

6.1.2 S2 × S2 × S1 cluster symmetry

In contrast to the other two cluster symmetries, for the symmetry S2 × S2 × S1

the system exhibits a closed set of unstable attractors, saddle periodic orbits that
are linked by heteroclinic connections forming a network. Thus, due to its intrinsic
instability, any su�ciently small noise is expected to trigger a persistent switching
process as speci�ed by equations (5.29) and (5.30) (see Figure 6.2) that always
approaches the previously de�ned heteroclinic framework (see Figure 6.4). If the
noise is too large, the system ceases any predictable switching features. We study
here the �rst case, demonstrate the e�ects of di�erent noise intensities on the net-
work dynamics and calculate the upper bound of noise intensity where predictable
switching breaks down.

The noise-induced switching process exhibits dynamical features that can be
viewed on two di�erent levels. On the network level, due the heteroclinic connec-
tions, the noise strongly in�uences the system when close to one of the saddles,
forcing the dynamics to follow one unstable direction, converging to the next sad-
dle. From the unit perspective, the phenomenon of persistent switching is a result
of two events: when close to one saddle,

i. the presence of a constant noise ν adds a di�erent extra current to each oscillator,
inducing the elements in the unstable cluster to reset at di�erent times, what
is essentially independent of the noise intensity or distribution, since the
states are mathematically unstable;
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Figure 6.2: Noise-induced switching process for the S2 × S2 × S1 cluster symmetry.
Example of noise-induced switching from an initial S2 × S2 × S1 state (τ = 0.49, ε = 0.025,
I = 1.04, γ = 1). The potential V of all oscillators are plotted at the times {s1,k}, oscillator
number one reset times. Each color represents one oscillator. After noise is introduced (s = 200),
a persistent switching takes place preserving the initial state symmetry.

ii. any di�erence in the potentials V between the elements in the stable cluster
caused by ν is erased each cycle by simultaneous supra-threshold input sig-
nals.

Therefore, for this symmetry, only the components of ν over the unstable clus-
ter strongly in�uence the system dynamics, and the e�ective noise in�uence can
be mapped into a single neuron perturbation at each cycle of the oscillators. In
other words, for small enough noise intensities, the resulting dynamics resembles
a sequence of single oscillator perturbations that obey the transition rules (5.29)
and (5.30). Notice that this sequence is unpredictable, since the desynchronization
directions (one in two possible directions at a time) depends only on the temporal
realization of the random noise (see Figure 6.3).

Figure 6.3: Random switching sequence induced by noise. Each time the system dynamics
approach what have been a saddle periodic orbit, the presence of noise induces a switching to one of
two directions, converging in the vicinity of another former saddle. Dashed lines represent possible
transition choices not taken (gray); continuous lines represent the transitions taken (black).

As shown above, the dynamics of this system is ruled by deterministic transi-
tions (the reiterated convergence to the vicinity of distinct saddles). But how does
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Figure 6.4: All possible transitions in a state space hyperplane. Two superimposed paths

generated by two di�erent noise intensities in the subspace containing V2,3,4, 10−5 (black) and
10−3 (green), (τ = 0.49, ε = 0.025, I = 1.04, γ = 1). The value of V2,3,4 is registered at times
{t1,k}, oscillator one reset times. The data set is generated by noise-induced switchings during
a period long enough to cover many times all possible transitions. The depicted structures are
qualitatively the same, stronger noise brings a fuzzier structure. Some apparently distant points
are actually close by the reset condition (1 → 0).

the dynamics when subject to di�erent noise intensities di�er in state space and
in time? Let us �rst study the structure generated by noise in state space. Figure
6.4 shows all possible transitions in a state space hyperplane for two di�erent noise
intensities, two orders of magnitude apart (10−5 and 10−3). Both are qualitatively
equivalent, the only perceptible di�erence is that stronger noise makes the plot
fuzzier due to �uctuations of the order of magnitude determined by the noise. No
major structural changes are caused by noise. This result is expected, since both
noise intensities are not strong enough to overcome the predicted transition rules,
and thus the switching is restricted to the same regions in state space, among the
same saddle states.

Considering the temporal aspect, while noise does not change the set of possible
transitions, it does change the typical time needed to perform each transition and
does change the distribution of times at di�erent distances from the attractors.
Figure 6.5 shows the probability density of �nding the state V at a distance dmin

from the closest saddle periodic orbit (see Equation 6.2); the black curve represents
the noise free case, and deviates from a δ function due to the initial condition that
implies a short convergence time, and due the approximation of the orbit to 283
equidistant (in time) points over the orbit. Based on this noise-free distribution, we
de�ne a criterion for a clear bounding to one attractor as dmin < 0.02. The other
distributions in Figure 6.5 (colored curves) represent di�erent noise intensities; up
to a noise intensity of the order of 10−3, a relevant fraction of time is spent close
to one of the saddles; for noise intensities of the order of 10−2, the distribution of
times changes qualitatively, and no clear bounding to any attractor can be inferred.

The distributions presented in Figure 6.5 are as expected, since a strong noise
yields larger perturbations to the trajectory in the state space, such that being



38 CHAPTER 6. NOISE-INDUCED SWITCHING AND COMPLEX PERIODIC ORBITS

Figure 6.5: Time distribution under di�erent noise intensities. The density of probability
of �nding a dynamical state V at di�erent distances to the closest attractor is depicted (τ =
0.49,ε = 0.025,I = 1.04,γ = 1). Each curve corresponds to a di�erent noise intensity. When the
intensity is increased, the time spent close to the attractors (dmin < 0.02) is decreased in relation
to the time spent over transients (dmin > 0.02). Noise intensities of the order of 10−2 (red curve)
qualitatively change the dynamics and no clear bound to any attractor can be infered by this
plot.

close to one of the saddles forces an "early departure" towards the vicinity of
the next saddle. Notice that the fast dynamics intrinsic to the transients is not
dramatically altered by the noise, and the shape of the curves are rather shifted
than altered, suggesting that the time spent in the transient is not dramatically
altered. In the other hand, the relative spent times between the fast dynamics and
the slow dynamic close to the saddles are changed (the number of transitions is
increased in the same period of time). Figure 6.6 displays the average transition
period for di�erent noise intensities; it shows that the transition times, besides a
small increase of the mean value, are remarkably stable for a large range of noise
intensities (2× 10−5 − 1× 10−3).

Figure 6.6: Mean transition time as a function of noise intensity. The dots represent the
mean transition times calculated during 20000 time units (in the order of few hundred transitions);
the bars represent the standard deviation. (τ = 0.49,ε = 0.025,I = 1.04,γ = 1).
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Thus, for a noise intensity of the order of 10−3 or below, a persistent switch-
ing process preserving the initial cluster symmetry S2 × S2 × S1 is achieved and
the mean switching times decrease very slowly, re�ecting the reduced time spent
close to the saddles when subject to increasing noise intensities (maximum noise
amplitudes).

6.2 Complex periodic orbits in asymmetric networks

In the last section we have shown that, for initial clustered states with symmetry
S2 × S2 × S1, a persistent switching process is indeed triggered by noise and that,
although unpredictable, the resulting path is well-characterized by a sequence of
unstable periodic orbits subject to the transition rules (5.29) and (5.30). Here
we show how symmetry-breaking input signals yield speci�c limit cycles in a con-
trollable way, the exact relation between the resulting cycles and the inputs, and
discuss its potential for neuronal-like computation.

As in the last section, we study the regime where asymmetric currents (noise or
external currents) do not overcome the switching properties de�ned in Chapter 5.
Here, we assume as a symmetry-breaking input a constant external current (real
value) added independently to each oscillator, such that each component di�ers in
value, given by

∆ = (∆1,∆2,∆3,∆4,∆5), (6.3)

with ∆i 6= ∆j, for all i and j.

This additional current yields an e�ective driving current variable when added
to the right side of equation (3.6), and the oscillator dynamics is now given by

dVi

ds
= (I + ∆i)− γVi + Si(s). (6.4)

Notice that contrary to the noise-induced switchings, this asymmetric input in-
creases the charging rate for speci�c oscillators in a reiterated way, what again
sequentially desynchronizes any unstable cluster each time it is formed, this time
forcing the trajectory in state space towards a stable limit cycle (complex periodic
orbit) close to a speci�c sub-set of the heteroclinic network (see Figure 6.7). It hap-
pens ultimately because the desynchronization direction in the unstable manifold
of a given saddle is already determined by the symmetry-breaking currents.

Until now we have shown that asymmetries generate complex periodic orbits
but, do di�erent asymmetries yield the same cycle? As shown in the last section,
one way to characterize these cycles is through the former saddle states the cycle
approaches (see Figure 6.8). Consider an initial state (c, b, a, a, b) and an external
current ∆ such that

∆1 > ∆2 > . . . > ∆5 . (6.5)

The resulting cycle is characterized by repetitively applying perturbations (5.29)
with δi > δi+1 for all i, resulting in

(c,b, a, a,b) → (b, a, c, b, a) → (a, c, b, a, b) → (c, b, a, b, a) →
(b, a, c, a, b) → (a, c, b, b, a) → (c,b, a, a,b) → ... (6.6)
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this cycle thus consists of a sequential comparison of the potential values in the
unstable cluster a generating this speci�c cyclical sequence.

Figure 6.7: Superposition of induced complex periodic orbit and all possible transi-
tions in state space. In black a state space structure generated by a persistent noise-induced
switching is depicted (see Figure 6.4); superimposed to the noise-induced structure, the colored
line represents a four dimensional trajectory in the state space describing a cycle that approaches
what have been six saddle periodic orbits. At times {s1,k}, the potential of oscillators two to four
are plotted as a three dimensional line and the potential of oscillator number �ve is given by a
color gradient from zero (yellow) to one (red). The large overlap between the two con�rms that
the cycles are indeed well characterized by an ordered sub-set of the original state set.

The sorting process (6.6) exhibits three distinct features: Given ∆i+1 < ∆i,

i. V5 can only switch from a → b → a recurrently. The transition a → c is
forbidden because ∆5 < ∆1,2,3,4. (If the initial condition is such that V5 ≈ c,
the sequence is c→ b→ a, the system leaves such states forever and V5 ≈ c
is transient);

ii. V4 can only switch from b → a → b recurrently, alternating a and b with V5.
The transition a→ c is forbidden because ∆4 < ∆1,2,3. (The transition a→ c
is only possible if V4,5 = (a, a) that switches to V4,5 = (c, b) that switches to
V4,5 = (b, a), and is thus transitient);

iii. if after a transition the labels {a, b, c} are all present in V1,2,3, the labels {a, b, c}
were all present in V1,2,3 before the transition; thus a→ c, b→ a and c→ b.
The transition a→ b is forbidden because ∆1,2,3 > ∆4,5.

Due the initial symmetry of the system (for ∆ = 0), any other ordering of the ∆i

implies a sequence of transitions equivalent to (6.6) among saddles with the units'
values permuted.

According to features (i) and (ii) during a cycle the values of units receiving
the two weaker currents cannot assume the state c (after a possible transient).



41

Figure 6.8: Residence time distribution at di�erent distances to an induced periodic
cycle. The probability density of �nding a dynamical state V at di�erent distances from an
attractor belonging to an induced cycle (black) and from attractors that do not belong to the
induced cycle (red) (τ = 0.49, ε = 0.025, I = 1.04, γ = 1). The distances are calculated as
the minimum distance to a point contained in each of these two groups. The graph shows that
only states belonging to the cycle are approached (by criteria de�ned in the previous section
dmin < 0.02).

This feature thus constitutes a dynamical marker to separate those three elements
receiving the three strongest inputs from those two receiving the two weakest.
Furthermore, permuting the elements subject to the two weakest input currents
generates a new valid cycle. Feature (iii) implies that neither the V1,2,3 nor the
V4,5 are compared among themselves. Therefore, the switching dynamics reveals
no discrete information about the relative magnitude of asymmetries within these
two groups and it is only possible to di�erentiate the three stronger from the two
weaker inputs observing only the cyclic sequence.

6.2.1 Computational aspects: general remarks

This subsection is devoted to de�ning which aspects will be studied as basic el-
ements of computation and establishing a common terminology for the next two
chapters. In what concerns computational aspects, although a precise evaluation of
the symmetry-breaking input vector may constitute a feasible mathematical prob-
lem, for robustness' sake we exploit only the switching feature and the information
regarding the sequence of approached saddles. By making this choice, we direct
our study to features that rather depend on a sequence of key states than a long
and precise sequence of spikes.

As shown in the �rst part of this section, by dynamically generating a periodic
orbit resembling a sequence of saddle states, the system classi�es the �ve continuous
asymmetric inputs into two di�erent groups, the three stronger inputs and the two
weaker inputs. This process constitutes thus a mapping from continuous inputs to
cycles providing a dynamical classi�cation of real-valued inputs into ten discrete
classes, since for �ve inputs the number of possible combinations (three in �ve) is
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Figure 6.9: Relation between symmetry-breaking inputs and complex periodic orbits
The set in the left represents the possible asymmetric inputs, the comparison among the di�erent
elements in the asymmetric vector means that all elements in the �rst group are larger than all
elements in the second group; The set in the right presents the possible resulting cycles in an
abstract representation, black for stronger input classi�cation and white for weaker input classi-
�cation, the site index runs vertically (�ve squares). The function G connects any asymmetric
vector ful�lling the condition in the left side to one of the possible ten percepts (for reasonable
asymmetry intensities).

given by,(
5
3

)
= 10. (6.7)

In other words, the continuous-valued symmetry-breaking input is internally per-
ceived as a binary vector that may be represented as a vector r = (r1, r2, r3, r4, r5)
where ri ∈ {0, 1} and

∑
i ri = 3. Notice that, although convenient, in r the values

{0, 1} are not relevant, they just represent, respectively, the elements subject to
the two weaker inputs and to the three stronger inputs during one oscillator cycle.
A more general (abstract) representation of those vectors is given by a color code,
where black represents higher oscillatory frequencies (stronger inputs) and white
lower oscillatory frequencies (weaker inputs), see Figure 6.9. During this work
both representations are used, the color code is specially used to emphasize the
di�erence between input currents, where real values have a precise meaning, from
cycles, where the information per site concerns only di�erences in the oscillators'
frequencies and not absolute values. Furthermore, for each percept r there are two
possible cycles (speci�c to that r), such that the initial condition determines which
one is selected. These classes, thus, constitute a basic form of computation which
relates inputs to an internal representations (a set of two cycles, see Figure 6.10),
independent of the initial state.

There are two main features to be exploited in the following chapters. First, the
characterization of cycles by the approached saddles, yielding robustness regarding
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Figure 6.10: Relation between percept classes and complex periodic orbits. At left the
percept classes r are labeled as a vector and a color code: black/1 represents higher oscillatory
frequencies; white/0 represents lower oscillatory frequencies. At right, the two possible cycles
exclusively related to the class at left.

noise and di�erences in the magnitude of the asymmetric input current, that may
generate extremely di�erent spike patterns despite converging to the same saddles.
Second, the superposition of di�erent sources of asymmetry, since only the oscil-
lators frequencies are relevant and thus only the total/e�ective asymmetry plays
a role. This approach is in fact a trade of information about the input for relia-
bility regarding the acquired information, since it yields a computation principle
that does not rely on a precise realization of a long sequence of spikes, but rather
a spike activity that resembles a sequence of quasi-synchronized states (clustered
states).

6.3 Conlusion

We have shown that inducing and controlling complex stable periodic orbits can
reliably generate an internal spatiotemporal representation of the inputs, classifying
analogical inputs into discrete classes. The process is robust regarding noise due
to the nature of its elements and proved to persist for a broad range of input
magnitudes and small di�erences in the input vector. This is due to the nature
of the comparison (direct comparison between values detected by saddle periodic
orbit dynamics). Both are interesting features for processing information. We
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should remark that any asymmetry that increases or decreases the frequency for
a certain element should yield the same behavior as adding external asymmetric
currents. In the next two chapters we will present a memory model based on the
principles studied here (Chapter 8), and introduce a new concept of neuron-like
computation based on induced complex limit cycles (Chapter 7).



Chapter 7

Computing by switching dynamics

In Chapter 6 we have shown how providing symmetry-breaking input signals to
the otherwise symmetric system de�ned in Chapter 3 results in the generation of
limit cycles in the state space. These limit cycles consist of stable complex periodic
orbits that always predictably approach what have been sets of six distinct saddle
states in the symmetric system. Analyzing the relation between input signals and
the periodic orbits revealed that the inputs are reliably classi�ed into one of ten
binary classes with activity 3/5. Each input is uniquely classi�ed by one of these
classes, and for each class the system converges to one out of two exclusive periodic
orbits. Which of the two is determined by the initial condition. We now show how
this classi�cation process forms the basis for a new type of universal computation
in pulse-coupled systems.

The basic idea is to combine di�erent sources of asymmetric currents (linear
superposition of currents) to form an e�ective asymmetry and after that, to map the
resulting cycles into di�erent output states. To demonstrate this idea, we present
two practical examples: �rst, a bitwise computer that performs all fundamental
forms of binary logic computations, in particular the XOR operation which provides
a NOT operator and guarantees that the system may universally compute any
desired function; and as a second example of application, we show how to make use
of the switching process as a guide system for an autonomous agent, navigating in
relation to a �led source when solving a gradient problem.

7.1 Bitwise computation

Bitwise operations ultimately underly all processes in digital computations. Their
logic is based on the comparison of two or more bits, that may assume one out
of two states {0, 1}, implemented in a clockwise cycle (well de�ned frequency).
Thus, by constituting the standard computational logic, it becomes a reasonable
benchmark for computation. We know from Section 6.2 that the network presented
in Section 3.3,

dVi

ds
= I − γVi + Si(s) + ∆eff,i, (7.1)

45
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is able to classify continuous inputs, here given by an e�ective asymmetric vector
∆eff , into one out of ten possible binary classes r with activity 3/5. By this activ-
ity we mean that the three stronger inputs are distinguishing from the two weaker.
Here we study how to design meaningful relations between symmetry-breaking in-
put signals, that are given by a vector R, and a pre-de�ned output, the desired
result of the computation. Notice that, although all of the information is already
contained in the cycles as spatiotemporal patterns, a second classi�cation of per-
cepts r by an output layer into a spatial pattern yields a clear visualization of the
output.

Here we choose two-bits bitwise operations as our illustrative example. It not
only reduces the input/output sets to a binary set, Ri ∈ {0, 1} (as the percepts
classes r), but also yields an intuitive understanding of the process. Once the basis
is explained through this example, we will discuss the general aspects of such a
process.

Coming to the actual computer, it is composed of three layers (see Figure 7.1):

1. the input, a �ve-bit binary vector R, determines both a logical operation
(�rst three bits R123; we choose OR, AND, and XOR as examples) and also
de�ne the two input bits for computation (R45);

2. the process layer, that consists of a network of �ve neuronal units (3.3);
inputs combine to form an e�ective asymmetric vector ∆eff = ∆ + ω ◦ R,
where ∆ is a �xed asymmetric input current, ω is a �xed weight vector
between the inputs R and the single neuron each Ri targets in the process
layer, and ◦ is an element-wise multiplication; this asymmetry induces a
speci�c cyclical pulse pattern classi�ed by a vector r;

3. the output, where the cycles are classi�ed by temporally �xed neural pattern
recognition (see Table 7.1) into two di�erent groups (�0� and �1�) according
to the desired output activity.

Now that we stated the basic lines of our approach, we should de�ne the constants
of the problem (base current and connection weights), which by itself presents a
non-trivial problem. How should these parameters be set in order to maximize the
number of implemented operations? The answer lies in mapping as many inputs
as possible to the same percept r.

In the actual con�guration, from the possible eight combinations in R123 we
de�ned the three basic operations as orthogonal vectors with the same module:
(1, 0, 0) to represent the OR; (0, 0, 1) for AND; and (0, 1, 0) for XOR. Now to setup
the constants of the system we consider features that simplify the mapping. First,
we know that all of these operators should yield the same value when operating
over the pair (0, 0). Therefore in order to minimize the number of mapped percepts
they should be represented by the same percept r. One possible way to do so is to
choose a base current such that

∆1 > ∆2 > ∆3 > ∆4 > ∆5, (7.2)

and thus by

∆eff = ∆ + ω ◦R (7.3)
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Figure 7.1: Bitwise computation realized by switching. Computer diagram and
a simultaneous illustration of all three layers dynamics (ω = (2.5, 2.5, 2.5, 5, 5) × 10−4,
τ = 0.49, ε = 0.025, I = 1.04, γ = 1, ∆ = (4, 3, 2, 1, 0) × 10−4). a) Diagram of bitwise
computer. Asymmetric external currents (Ri ∈ {0, 1}) generate speci�c limit cycles as
internal representations. Conform previously de�ned categories the spike sequences are
associated to a zero or one pattern by the output layer. b) Three consecutive sets of
external inputs as constant currents (t = 0, t = 500, t = 1000); c) Poincaré section
showing the resulting limit cycles, all potentials plotted in the moment oscillator number
one is reset; d) visual representation of the current output.

any of the three operations over R43 = (0, 0) results in the cycle (1, 1, 1, 0, 0), thus

R = (1, 0, 0, 0, 0)∨R = (0, 1, 0, 0, 0)∨R = (0, 1, 0, 0, 0) ⇔ r = (1, 1, 1, 0, 0). (7.4)

As a second step, the functions OR and XOR should yield the same cycles for
all operands but (1, 1). It is achieved directly by imposing that the connection
weights ω between the inputs and the network are such that

{∆eff,i > ∆eff,j ∀ i, j iff Ri = 1 ∧ Rj = 0}, (7.5)

with i = {1, 2, 3, 4, 5} and j = {1, 2, 3, 4, 5}. This last restriction also yields a
reduced number or percepts, such that,

R = (1, 0, 0, 0, 1) ∨R = (0, 1, 0, 0, 1) ⇔ r = (1, 1, 0, 0, 1), (7.6)

R = (1, 0, 0, 1, 0) ∨R = (0, 1, 0, 1, 0) ⇔ r = (1, 1, 0, 1, 0), (7.7)

R = (1, 0, 0, 1, 1) ⇔ r = (1, 0, 0, 1, 1), (7.8)

R = (0, 1, 0, 1, 1) ⇔ r = (0, 1, 0, 1, 1). (7.9)

The third and last step show a straight forward mapping of the AND operation,
since the last three operations have no bounds to the other two operators to be
ful�lled. Thus,

R = (0, 0, 1, 0, 1) ⇔ r = (1, 0, 1, 0, 1), (7.10)

R = (0, 0, 1, 1, 0) ⇔ r = (1, 0, 1, 1, 0), (7.11)

R = (0, 0, 1, 1, 1) ⇔ r = (0, 0, 1, 1, 1). (7.12)

The combined results of the three steps are summarized on Table 7.1. This choice
of parameters seems to be a natural choice, since it yields an almost identical set
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Table 7.1: Logic function de�nitions. The input vectors are categorized into activity
and non-activity according to each function. The given input is weighted and combined
to the base asymmetric current to de�ne an e�ective asymmetry related to one of the 10
possible internal representations r. (ω = (2.5, 2.5, 2.5, 5, 5) × 10−4, τ = 0.49, ε = 0.025,
I = 1.04, γ = 1, ∆ = (4, 3, 2, 1, 0)× 10−4)

binary logic function input (R) cycle (r) output

AND (0,0,1,0,0) (1,1,1,0,0) 0

(0,0,1,0,1) (1,0,1,0,1) 0

(0,0,1,1,0) (1,0,1,1,0) 0

(0,0,1,1,1) (0,0,1,1,1) 1

OR (1,0,0,0,0) (1,1,1,0,0) 0

(1,0,0,0,1) (1,1,0,0,1) 1

(1,0,0,1,0) (1,1,0,1,0) 1

(1,0,0,1,1) (1,0,0,1,1) 1

XOR (0,1,0,0,0) (1,1,1,0,0) 0

(0,1,0,0,1) (1,1,0,0,1) 1

(0,1,0,1,0) (1,1,0,1,0) 1

(0,1,0,1,1) (0,1,0,1,1) 0

of cycles r for the functions OR and XOR, except for the pair R45 = (1, 1) (as
it should be), and maps the results of all functions over R45 = (0, 0) to the same
r. (see table 7.1) Thus, it minimizes the necessary number of representations r
while maintaining the input R in a maximum activity of

∑
iRi = 3 as in r. Figure

7.2 combines all information present in Figure 7.1(a) and Table 7.1 in a single
picture, and displays all possible computations for the same set of parameters as
in Table 7.1, as a set transformation, showing the relation of each allowed input R
(pre-de�ned) to the percepts r and between r and the output as well.

In what concerns the output layer there is only a short remark to be made. As
can be seen in Table 7.1, all information about the operation's results are already
contained in r, thus the output layer merely changes how the results are presented.
Di�erent methods can be implemented to classify spatiotemporal patterns [30, 31],
yielding equivalent results. In the data presented here spatiotemporal patterns are
decoded by simultaneous events detection.

As an actual example of computation, Figures 7.1(b,c,d) display the three com-
puting layers for the three operators (OR, AND and XOR) given a binary operand
(0, 1) (see Figure 7.3 for summarized process). Operationally speaking, the re-
sult emerges only some time after changing the operation (at times t = 500 and
t = 1000): besides a short dynamic transient, this is due to the time required for
detecting the cyclic patterns. For the speci�ed chosen parameters, it takes about
300 time steps to guarantee the right answer (see Figure 7.4).

We should now stress three aspects of this new computation paradigm: �rst, by
concatenating these three functions an arbitrary logic function can be computed
so that the system serves as an universal computational device; second, that the
choice of binary operations is merely illustrative, all properties discussed here rely
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Figure 7.2: Computation representation as a set transformation in two steps.

The bitwise computer depicted in Figure 7.1, in accordance with table 7.1. The function
f1 is de�ned by the connection weights between the input and the process layer plus the
base asymmetry. The function f2 is de�ned by the weights between the process layer and
the output layer.

only on the mapping of input signals to a set of orbits. In a network with N = 5,
in principal, we could compare up to 4 inputs and still have one operation discrim-
inator, although the number of feasible functions is decreased. Furthermore, in
principle, for larger networks the number of inputs increases linearly with the net-
work, whereas the number of distinct stable periodic orbits increases exponentially,
and thus may yield a much larger number of possible functions involving di�erent
number of inputs.

This shows that switching dynamics in neural networks provides a natural way
of universal computation in dynamical systems. In practical applications, such dy-
namics can be easily implemented as networks of di�erent oscillator types [3, 25, 27]
because only the feature of appropriate input classi�cation at the saddles is re-
quired; transition rules su�ciently resembling (5.29) are also present in larger net-
works of coupled oscillator cf. [25, 26] and may equivalently be exploited. As an
example, for N = 100 a persistent switching process among unstable states with
cluster symmetry S21 × S21 × S21 × S21 × S16 robustly takes place. In previous
works on coding and computational properties of oscillatory circuits, e.g. [3, 8, 27],
individual saddles serve as conceptual coding elements. The fundamental neu-
ral computer presented above now represents inputs as cyclic sequences among a
number of saddle states (cf. [8]) and exploits the advantages coming with this
re-interpretation, e.g. the independence of the dynamical coding of the initial con-
dition.

The main dynamical property we exploit is that symmetry-breaking input sig-
nals guide the system to an input-speci�c cycle in state space. As many very
similar such cycles already exist in small networks, our novel concept ideally ex-
ploits features characteristic of generic heteroclinic networks in (almost) symmetric
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Figure 7.3: Three bitwise operations: superposition of currents. The three op-
erations depicted on Figure 7.1. It shows step by step how di�erent sources of currents
adds to form a e�ective asymmetry in accordance to Table 7.1 and Figure 6.10. Each
input is multiplied by a connection weight and added to a base asymmetry, resulting in
an e�ective asymmetry. Red values represent constants of the network, black values are
variables resulting from the operations, and blue values represent the associated cycles.
Each operation is done independently in each column.

systems. The system is also intrinsically robust to noise due to the continuous-time
integration of the input signals and with increasing noise mainly the average period
of the cycles decreases but not its overall shape in state space. Additionally, other
naturally emerging features are of practical interest. One of them is redundancy
that occurs because the internal representation to a continuous input is cyclic; A
second is that no learning rule is required after the initial asymmetry is imposed
and all of the cyclic dynamics, representing the results of the computation, then
emerges spontaneously.
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Figure 7.4: Error fraction vanishes with time after function switched. The
fraction of error expected after an operation change as a function of time. Each color
brings the expected fraction of error after a switch among speci�c operations (average
over 200 switches). A new operation out of AND, OR or XOR is chosen randomly every
�ve hundred time steps.
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7.2 Autonomous navigation: �eld gradients

Autonomous navigation constitutes an important subject of current research in
�elds as di�erent as avionics, robotics and neuroscience. A minimal example of
navigation is given by an autonomous agent that navigates (converges) in relation
to a source �eld. Depending on the area of research, di�erent strategies are investi-
gated in order to solve this sort of problem, from standard procedural computation
to a mix of neural network and procedural computation. Here, we introduce a new
method of navigation realized only by bio-inspired neuron-like units, where the
neural activity yields spatiotemporal spike patterns characterized in state space by
a persistent switching among saddle states.

The idea is to design a movable agent that exhibits �eld detectors with a well-
de�ned spatial distribution; each of these detectors provides input to one neuron of
a neural network in which it induces speci�c periodic spatiotemporal pulse patterns,
limit cycles in the state space (see Chapter 6), conforms its position in relation to
a �eld source; based on the achieved periodic pattern, a turning decision is made
to yield a convergent movement towards the source of the �eld. Notice that in
this picture, after detecting the �eld, the agent generates an abstract internal
representation of the environment (�eld gradient) to then make a turning decision.

For the sake of simplicity, here we present the minimal example of such an
agent. It is composed of three layers:

1. the detectors: �ve �eld detectors spatially distributed over a circle of radius
ρ and equally spaced from each other by an angle σ (see Figure 7.5a); each
detector unidirectionally targets only one neuron in the processing layer (see
Figure 7.5b) and delivers an input that is a function f(ψ) of the �eld ψ in its
position;

2. the processing layer consists of a network of �ve neuronal units (3.3);
asymmetric inputs ∆i = f(ψi) delivered by the detectors induce speci�c
cyclic pulse patterns classi�ed by a vector r (see Table 6.10), that consists of
an internal representation of the inputs;

3. the output: by calculating the minimal distance to di�erent saddle periodic
orbits, the induced limit cycle in the process layer is detected, and proper
turning decisions are made in order to direct the agent towards the �eld
source.

Concerning the movement of the agent, we assume again the minimal (non-
trivial) model where the agent advances at a �xed step size and there is only one
source �eld. We here consider a two-dimensional environment with coordinates
(x, y), such that the agent's position and orientation is completely de�ned by the
position (xc, yc) of its center and one of the coordinates of one of its detectors (xi)
(since the radius is �xed, ρ) or, in an equivalent way, the position of its center
and the angle θ drawn in between the Cartesian x-axis and the line de�ned by the
center of the agent and the central detector.

Consider a convergent movement to the source. The movement is composed
of only two actions. In a �rst moment the decision of turning is made and in
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Figure 7.5: Diagram of autonomous agent. a) Five �eld detectors are distributed
equally every σ degrees over a segment of a circle (total angle equaling 4σ) of radius ρ; b)
Each sensor is connected to only one element in the neural network, unidirectionally; c)
For a convergent to the source behavior, the desired turn decision for the three possible
situations: stronger inputs from the left (Red) to turn left; stronger inputs from the front
(Blue) to no turning; stronger inputs from the right (Green) to turn right.

the second the actual step takes place. The turning decision begins by evaluating
the �eld intensity over each of the detectors. Due to the large variation of �eld
intensities at di�erent distances from the source, the detectors implement a function
f(ψ) of ψ in order to normalize the �eld to reasonable values (10−5−10−3, as shown
in the last chapter), the exact form of the function is not relevant. The numerical
simulation presented here is given by,

f(ψi) =
ψi

max (ψj : j = {1, . . . , 5})
× C, (7.13)

where C is a constant. After this normalization, the resulting signals are streamed
down to the neural network causing one out of three situations (see Figure 7.5c):
�rst, the �eld is stronger on the left side of the agent, i.e. ∆1,2,3 > ∆4,5 yielding
the percept r = (1, 1, 1, 0, 0) and triggering a turn-left decision,

θ = θ + η, (7.14)

where η is a �xed amount; second, the �eld is stronger on the right side, ∆3,4,5 >
∆1,2 yielding the percept r = (0, 0, 1, 1, 1), triggering in the output layer a turn-
right decision,

θ = θ − η; (7.15)

and third, the �eld is stronger in the front, ∆2,3,4 > ∆1,5 yielding the percept
r = (0, 1, 1, 1, 0), that does not trigger any turning. Notice that, as in the last
section, the output layer should be set up to respond in accordance with the desired
agent behavior. The second action composing the movement is a simple �xed step
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Figure 7.6: Relative positions of agent and radial source �eld. Diagram highlight-
ing the distances d3 and d5 of detectors three and �ve with respect to the source �eld.
The position of each detector is given by a cartesian pair (xi, yi), where i is the detector
index; (xc, yc) is the position of the center of the agent; and (xs, ys) is the position of the
source.

in the actual direction of the central detector. After each step, the neural activity
is updated in accordance with the new asymmetric input and the two steps of the
movement are repeated again.

As an actual example of navigation, we implement an agent that pursues a
single moving source �eld (see Figure 7.7). The �eld considered here is radial,
de�ned by

ψ(d) =
1

d2
, (7.16)

where r is the distance between a point in the plane (x, y) and the source. This
represents, e.g., a physical light source in two dimensions. While the source ad-
vances at a constant pace in a �xed direction, the agent adjust its trajectory in
order to chase the source. The resulting dynamics is such that, at each time step,
�rst the distance between the di�erent detector and the source are calculated,

di =
√

(xs − xi)2(ys − yi)2, (7.17)

where (xs, ys) are the source coordinates and (xi, yi) are the coordinates of detector
i (see Figure 7.6); second, the �elds are calculated through 7.19,

ψi = ψ(di), (7.18)

and third, the e�ective asymmetry is calculated according to 7.13,

∆e�,i = f(ψi). (7.19)

And, by calculating the larger three ∆e�,i the adequate turning decision is made.
Notice that due to the few detectors (low resolution) the agent does not align



54 CHAPTER 7. COMPUTING BY SWITCHING DYNAMICS

Figure 7.7: Agent converges towards moving radial source �eld. Four panels
sampling di�erent times (5000,10000,15000,20500). The gray gradient in the background
depict the intensity of the �eld (1/d2) in a logarithmic scale. The green line represents
the �led source trajectory. The red line represents the agent trajectory. The simulation
is ended as soon as the agent (its center) approaches a distance equal to two times the
agent radius in relation to the source.

precisely with the source from large distances, because the spatial distribution of
detectors imposes an e�ective angle (between the source and the agent orientation)
to trigger each turning decision and, thus, an e�ective displacement proportional to
r. Therefore, smaller values of σ and ρ yield a better resolution when close to the
source �eld, whereas larger values provides a better resolution at larger distances.
Furthermore, when the alignment tends to stay in the frontier between the non-
turning situation and one of the two turning situations, the transient resulting
from the constant change between these two percepts may cause momentary wrong
turning decisions and the resulting path is therefore not a sequence of coherent
corrections towards the desired path. Apart from this variation, on average the
turning is in the direction of the source. Thus, if the agent's speed is high enough,
the agent eventually overtakes the source.

7.3 Conclusion

In summary, we presented and analyzed how switching dynamics may be used for
a new type of universal computation in pulse-coupled systems and applied this
to steer an autonomous agent. Here, a simple �ve neuron network provides an
internal representation of sensory input and at the same time perform all basic
information processing. Providing small asymmetries to a previously symmetric
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network of dynamically connected saddles triggers speci�c limit cycles close to the
prede�ned heteroclinic network. By entering into cycles in a controllable way [10],
the asymmetries can be associated with cycles, which in turn become abstract rep-
resentations of the input asymmetry. Two distinct examples of computation were
provided: First, we use part of the symmetry-breaking asymmetry to de�ned a logic
function and another part to de�ne the input to this function. The resulting cycles
themselves code the solution of a computation. As a second example, we provided
an autonomous agent capable of pursuing a source �eld by implementing a similar
computation as in the �rst example, i.e., by generating an abstract internal repre-
sentation of the environment to then perform the required action. Understanding
the computational capabilities of persistent switching processes in more detail will
help to e�ciently implement more complex computations; for instance, the cyclical
spatiotemporal pattern itself (instead of a binary output) could serve as an input
to a downstream neural device. Moreover, it might be possible to implement more
complex functions such as multiplications, pattern recognition etc., in a single but
larger oscillatory system exhibiting controllable switching.





Chapter 8

Memory by switching dynamics

In the previous chapters, we have studied how external inputs control a switching
process that yields speci�c limit cycles. It was shown that, provided symmetry-
breaking input signals, the system generates an internal representation of such
inputs that are maintained as long as the asymmetry is present. In this chapter we
show how to implement memory in this model by sustaining the internal represen-
tation even though the external asymmetric signal is removed after a short time.
As a practical example, we show how to use this dynamics to memorize pictures of
pixels colored via a six bits color palette.

In contrast to standard memory models, that require a structural change (synap-
tic plasticity) in order to store information, we here propose a dynamical memory
mechanism based on perturbations of heteroclinic networks. It consists of a time
dependent modi�cation of an internal parameter of each oscillator, proportional to
a external asymmetry, increasing in di�erent proportions the intrinsic frequency
of each oscillator, i.e., we altered an internal property of the oscillators in order
to mimic the external asymmetric signal without changing the connection between
two oscillators.

8.1 Short-term memory

In neuroscience, short-term memory is a process by which information is stored
transiently. It is essential to many levels of animal behavior such as stimulus
detection and processing, long-term memory formation, and to realizing working
memory as well. In theory, the role of short-term memory in neuronal systems is
analogous to those in digital computation, they serve either as information bu�ers
(RAM) or as workspaces where information can be handled (cache/processor). This
makes arti�cial neuronal systems exhibiting those features of great relevance for
current research.

In this work, the relevant network states are complex periodic orbits that arise
in the presence of network asymmetries. Thus, in principle, the implementation
of memory could be realized by a sustained asymmetry. As shown in Chapters 6
and 7, the nature of the asymmetries is not relevant, but only the di�erences in
the intrinsic frequency of each oscillator, which results in an e�ective asymmetry.

57
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Figure 8.1: Threshold shift for four di�erent sets of parameters as a function of time.

The same external signal (∆i = 5× 10−4) is applied for the same period of time, 400 time steps
(gray background), for four di�erent parameter sets: b = 0.005 and c = 0.002 (black curve);
b = 0.01 and c = 0.004 (green curve); b = 0.02 and c = 0.04 (red curve); b = 0.04 and c = 0.016
(blue curve). The shaded lines represents the two �xed points (8.2) and erefe3, common to all
three sets of parameters: upper θ = 0 for ∆ = 0; lower θ 0.99875 for ∆i = 5× 10−4.

Therefore, the relevant question to be answered in this section is: is there a way to
sustain the di�erences in frequency among the oscillators after the external input
is turned o�, by local mechanisms only? The answer is yes, and as we shall see,
the mechanism is not only local to the network, but to each oscillator.

To approach this question, we extended the Integrate-and-Fire model intro-
duced in Chapter 3 ((3.3) and (3.5)) to include spike facilitation: oscillators that
receive stronger stimulation exhibit larger �ring rates for a certain period after
the stimulus. Here, it is implemented through a second di�erential equation that
slightly shifts down the potential threshold θi of oscillator i as a function of external
currents ∆i (adaptive spiking threshold),

dθi

ds
= −b∆i + c(θ0 − θi), (8.1)

where θ0 is the initial, non-altered, threshold, s is the time variable and b and
c are constants that regulate the speeds of the threshold shifts, decrement and
increment respectively. Furthermore, the right side of equation (8.1) imposes a
saturation point to θi (�xed point solution),

dθi

ds
= 0 ⇔ θi = θ0 −

b∆i

c
, (8.2)

that guarantees, through a reasonable choice of b and c (by limiting the maximum
threshold shift), that the basic switching dynamic is preserved. In the absence of
asymmetries (∆i = 0), the �xed point is shifted back to the original value,

dθi

ds
= 0 ⇔ θi = θ0. (8.3)
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Figure 8.2: Example of dynamical memory by threshold shift. An external signal ∆ =
(5, 4, 3, 2, 1) × 10−4 induces di�erent shifts in the thresholds of distinct neurons. The resulting
asymmetry sustain the speci�c complex limit cycles associated to the input signal after it is turned
o�. Before and after the memory process (white background), switchings are generated by noise
(maximum amplitude of the order of 10−4); After an imprinting period (dark gray background,
time steps 600 to 1000), the asymmetry is sustained by the threshold shift (light gray background).

Notice that here, for the sake of simplicity and clarity, we choose the simplest pos-
sible implementation of spike facilitation, an adaptive spiking threshold, assuming
a linear relation between input signals and the threshold shifts. More complex
nonlinear dependencies will not qualitatively change the overall dynamics if the
thresholds are shifted weakly. Thus, the simple linear version provides insights to
generic aspects of this type of short-term memory.

In this model, the memory is realized in two phases: �rst, there is an imprinting
period, where the external asymmetry ∆, in (8.1), induces a di�erent shift down
in the threshold of each oscillator; and second, the actual memory that takes place
after the input is turned o�; it consists of the period between the end of the input
signal and the moment where the frequency di�erences generated by the imprinted
asymmetry are overcome by the background noise (see Figure 8.2). Thus, from
that moment on, any information about the input is erased, the periodic cycle is
lost. Notice that, in the absence of noise, the memory will never be erased, but the
induced cycle becomes longer and longer as the asymmetry becomes smaller.

Even though equation (8.1) is independent of (3.6), there are two constraints
to be considered: �rst, the saturation point should be close enough to the initial
value (θ0) to maintain the initial switching properties, as discussed in chapter 6;
second, the memory phase should be long enough to perform at least one complete
cycle in order to guarantee an unambiguous cycle identi�cation.

This simple modi�cation to a neural oscillator model provides a straightforward
memory device that is based on local information only. It provides an information
bu�er where the memory period in set by b and c, and a workspace where signals
from di�erent sources can be handled, since the internal network state can be
manipulated by a process as simple as a linear superposition of currents.
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8.2 Visual memory: 6-bit RGB color palette

One of the most fascinating human capabilities is the reliable way we identify and
memorize new images and, as a second aspect, how fast we erase such informa-
tion when it becomes not relevant anymore at a given moment. As humans, we
are constantly bombarded with visual information, mostly discarded as irrelevant
almost instantaneously. Therefore, the study of visual short-term memory models
may yield the discovery of new aspects in visual information processes not only in
arti�cial but also in biological systems.

In this section we implement a network capable of performing visual short-term
memory based on the memory mechanism presented in Section 8.1. We consider
an architecture such that small independent networks handle independent image
pixels. Each pixel is composed of three basic colors, in the RGB color system, red,
green and blue. In this system di�erent color are de�ned by di�erent intensities of
these three basic colors, from no color (0% of available variant color) to full color
(100% of available variant color). Here, we consider a six bits color resolution, two
bits per basic color, resulting in a total of 64 colors. Thus, the color of each pixel
px,y, with Cartesian coordinates (x, y) is de�ned by a binary vector

px,y = (p1
x,y, p

2
x,y, p

3
x,y, p

4
x,y, p

5
x,y, p

6
x,y), (8.4)

such that

i ∈ {1, . . . , 6} for all pi
x,y ∈ {0, 1}. (8.5)

The �rst two bits are reserved for the four red variants (no red to bright red), the
third and fourth are reserved for the four green variants, and the �fth and sixth for
the four blue variants. The intensity of each variant color increases from no color

(pi
x,y, p

i+1
x,y ) = (0, 0) (8.6)

to full color

(pi
x,y, p

i+1
x,y ) = (1, 1), (8.7)

with i ∈ {1, 3, 5}. The two intermediate intensities are labeled as (0, 1) and (1, 0),
with the �rst being less intense than the second. Thus, px,y = (0, 0, 0, 0, 0, 0)
represents the black color (0% of red, 0% of green and 0% of blue) and px,y =
(1, 1, 1, 1, 1, 1) represents the white color (100% of red, 100% of green and 100%
of blue). Apart from these two values, the exact values of the other colors in the
RGB palette are not relevant, since internally the input colors assume a abstract
representation (percepts). For illustrative purpose only, here the intermediate pair
(0, 1) represents a color intensity of 25% and the pair (1, 0) a color intensity of 50%.
On the other hand, the number of di�erent abstract representations is relevant, and
as mentioned before, here �xed at 26 = 64.

In order to process those 64 di�erent inputs, we here make use of two identical
networks, composed of �ve oscillators each, in accordance with the network intro-
duced in Chapter 3. As showed in Chapter 5, each of these networks provide ten
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Figure 8.3: Color detection: network diagram. A six bits binary vector de�nes one out of
64 colors for a pixel, two bits per basic color (red-green-blue, RGB). The bits representing each
color are separated into pairs of two, and used independently as inputs for two neural networks.
Each bit is weight and added as an additional external current for a single oscillator (ωi∆i). The
lasting two oscillators of each network receive an constant input equal to one ((∆4,∆5) = (1, 1))

percepts. Thus, the combination of two independent networks (total of N = 10)
provides 100 distinct percepts, more than enough to represent 64 colors. The in-
formation about each color is divided between the two networks, such that the �rst
network receives the �rst bit of every color, pi

x,y with i ∈ {1, 3, 5}, and the second
network the second bit, pi

x,y with i ∈ {2, 4, 6} (see Figure 8.3). The connections
between these inputs and the networks are such that each input targets only one
neuron in one of the networks. Therefore, for each pixel (x, y), in the �rst network,

dVi

ds
= I − γVi + Si(s) + ωi∆i (8.8)

with

dθi

ds
= −bωi∆i + c(θ0 − θi), (8.9)

and

∆ = (p1, p3, p5, 1, 1), (8.10)

where ωi is the connection weight between the input ∆i and oscillator i. Notice
that the subindex (x, y) is contracted, since it would appear in all constants and in
all elements of every vector; notice also that the input component (∆4,∆5) = (1, 1)
is �xed in order to guarantee an e�ective asymmetry. In an equivalent way, the
second network receives and input vector,

∆ = (p2, p4, p6, 1, 1). (8.11)
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Figure 8.4: Visual memory example. A visual input is presented to the network as a set of
colored pixels (columns in the left side of the picture). The network internal state is sampled
every 100 time steps, depicting the dynamics. This input induce, after a transient, a change in the
internal network state from no-information (black color in every pixel) to the same information
presented in the input. The input is maintained from time 100 until 600; after time 2300, the
information begins to degrade until 3300, when all information is lost.

This choice of distributing the bits is arbitrary, since the bits are independent. Here
it is motivated only by symmetry reasons, since each color is de�ned by two bits,
this separation maintains the equivalence between the two networks concerning the
colors. That is, each network receives exactly half of the information about each
color.

As shown in the previous section, the asymmetric input generates complex
periodic orbits in both networks, that are sustained by the threshold shift until
the information is erased by the background noise. Thus, the desired internal
representation of a given color is achieved as soon as both complex periodic orbit
are stabilized by the asymmetry, and lost as soon as one of the orbits is changed.
Figure 8.4 show such dynamics for a string of pixels with di�erent colors.

This approach brings two new interesting features related to short-term mem-
ory: �rst, since there is no synaptic plasticity, the noisy dynamics by itself erases
all information after a given time; and second, a wrong color detection becomes
unlikely, since it would require a valid sequence of six saddles when subject to an
asymmetry that induces a di�erent cycle.

8.3 Conclusion

In this chapter we introduced a novel conceptual model for short-term memory in
systems of pulse-coupled neural oscillators. It exploits induced switchings between
saddle periodic orbits that result in speci�c stable limit cycles, close to a heteroclinic
framework. As a practical example, we implemented a visual short-term memory in
color, by processing in parallel the color of each pixel. This model yields a reliable
and �exible new kind of short term memory, since the phenomenon is robust to
noise, due the nature of the network elements, and no learning rule is required
to memorize new items, because the local dynamics of each element dynamically
induces a limit cycle as an internal representation. Moreover, since there is no
synaptic plasticity, any traces of a memory are dynamically erased due to noise.



Chapter 9

Discussion

In this thesis, we studied a new paradigm of natural computation by persistent
switching dynamics among saddle periodic orbits. Such switching processes emerge
in a broad range of network dynamical systems with symmetry. We focused on two
main questions: how to control this switching processes by applying symmetry-
breaking input signals and how to translate the relation between inputs and the
resulting orbits into meaningful computations.

As speci�ed in the �rst part (Chapters 1-3), we restricted this work to net-
works of generic pulse-coupled oscillators. This choice had two strong motivations:
such models keep characteristic aspects of biological neuronal networks (as pulse-
interactions and strong non-linearities), whereas they simultaneously yield analytic
access to stability and switching properties [10, 25]. Therefore, our results may help
to understand new aspects in computation not only in abstract model networks,
but also in biological as well arti�cial systems.

In the second part (Chapters 4-6), theoretical aspects of robust heteroclinic
cycles in symmetric networks of pulse-coupled oscillators were studied analytically.
One prominent aspect of symmetric model networks is the reduced number of pa-
rameters especially when considering large networks. Thus, by choosing to study
networks that are symmetric in all respects we simpli�ed the initial task of iden-
tifying potential saddle periodic orbits. This was even further simpli�ed by the
existence of symmetrically related states. In such systems, by �nding one orbit, a
family of orbits is always identi�ed due to the full permutation symmetry of the
system.

This symmetry is one of the three main di�erences between encoding via switch-
ing dynamics and standard memory models exhibiting stable attractor dynamics
[1, 32]. Whereas the �rst requires symmetry assumptions to identify a large num-
ber of symmetrically related states by varying few parameters, the second requires
learning rules in order to the adjust a large number of parameters proportional
to the number of connections. A second contrasting aspect concerns the way in-
formation is encoded in time. As shown in Chapter 6, signals are encoded via
switching dynamics by breaking the system symmetry, thus inducing heteroclinic
cycles according to precise transition rules. Therefore, signals are encoded as spa-
tiotemporal patterns, that in principle may yield an exponential encoding capacity,
since the information is spread in time when combining cyclically di�erent saddle
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orbits. As a third aspect, we showed that only the rank order of the values of the
asymmetric signals are relevant, not their absolute values. Based on these three
features, we argue that encoding information in sequences of saddle states provides
the basis for a new kind of neural computation that is independent of precise spa-
tiotemporal pulse patterns, but only dependent on sequences of certain partially
synchronous states.

In the third part of this work (Chapters 7-8), we present two applications that
make use of the encoding process mentioned above: universal computation and
short-term memory. In Chapter 7, we showed that a small network with N = 5 is
capable of performing all basic bitwise operations (AND, OR and XOR) over a two
bits operand by de�ning a mapping between input signals and complex periodic
orbits. By construction, any computer capable of performing all basic operations
is capable of universal computation. This argument in fact, is valid for any neural
network model capable of performing such a mapping.

Therefore, the relevant questions regarding computation not only concerns the
basic operations, but also the reliability and scalability of the neural computer
architecture. Concerning reliability, the computational model introduced here ex-
hibits two interesting unusual features. It yields a fast switching between di�erent
complex periodic orbits due to the intrinsic instability of the saddle periodic orbits
and simultaneously provides, in the presence of input signals, an immediate internal
representations intrinsically robust to noise due to the nature of the network ele-
ments. Concerning scalability, for the class of systems studied here, large networks
exhibit prevalence of unstable attractors over stable ones [25], therefore increasing
the likelihood of establishing a persistent switching process. Moreover, for these
systems, the number of percepts does not increase linearly with the number of net-
work elements as for stable attractor dynamical systems, but exponentially, because
the number of percepts is proportional to the number of allowed saddle sequences
and not the number of saddles.

Other approaches of natural computation based on distributed spatiotempo-
ral dynamics of nonlinear neuron-like systems are markedly di�erent from the one
presented here. For instance, sparse networks operating in the "echo state" [34]
or "liquid state" [33] are based on chaotic dynamics and represent (memorize) in-
puts for some time due to small positive Lyapunov exponents. The represented
information is read out by learning output connections. These kinds of computa-
tion, generically known as reservoir computing, are similar to our computation by
persistent switching processes in that information is represented as spatiotempo-
ral dynamics and the system does not learn internally, only output connections are
adapted. The main di�erences are that our computations are based on non-chaotic,
heteroclinic switching, are therefore intrinsically robust to noise, are analytically
well understood and, most importantly, fully controllable by the input. In addition,
only one pattern of given temporal length is required to be learned in the output
layer, because all induced complex periodic orbits are symmetrically related to each
other.

Concerning memory, the original model as introduced in Chapter 3 does not
exhibit memory features in the strict sense, because the system is only capable of
representing an input as long as the input still present. In order to properly imple-
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ment memory we extended the model to include spike facilitation, that sustains the
asymmetry generated by an input signal trough a threshold shift. This approach
resulted in a novel implementation of short-term memory, intrinsically robust to
noise and versatile with respect to state changes, due its instability properties and
the absence of synaptic adaptations. Moreover, contrary to stable attractor dy-
namics, in this memory process there is no error corrections or convergence to
any state other than the percept related to the given input. Thus, while on one
hand the system misses some properties of associative memory for categorization,
it yields an almost instantaneous representation and storage of new information
in the short-term even though the new item is not correlated to any previously
established memory.

This study was motivated by recent works especially in two �elds, biology and
mathematics. On one hand, an ever growing body of evidence shows that biological
systems may use spatiotemporal spike patterns to encode and process information
[3, 35]. On the other hand, new techniques on how to study the interaction of pulse
coupled oscillators have been developed. Of particular interest were the mathemat-
ical analysis of delayed pulse interactions and unstable yet attractive orbits [17].
Therefore, spatiotemporal patterns generated by a controllable switching in net-
works of pulse-coupled oscillators became an interesting subject. In this thesis our
aim was to develop new natural forms of arti�cial computation.

When developing any scienti�c theory, two important points should be taken
into account: clarity and generality. Here, these points were addressed by the choice
of the network model. In this work, all mechanisms leading to a persistent switching
process were mathematically derived based on the properties of heteroclinic cycles,
and thus, are not restricted to any speci�c model. On the other hand, the pulse-
interactions create an important link to biological systems. For instance, recent
works [8, 23, 28] showed that controllable switching also occurs for distinct models,
such as phase-coupled oscillators, that are conceptually di�erent from our system
due to its temporally continuous interactions. Concerning clarity, the size of the
network played an important role. By assuming N = 5, we reduced the number of
events for a given orbit, yielding a straightforward analysis. Notice that, as shown
in [25], increasing the network size leads to a prevalence of unstable attractors and
may increase the probability of �nding heteroclinic connections. As an example,
it was shown [25] that switchings with similar cluster splitting robustly occur for
N = 100. An analysis analogous to the one presented in this thesis yield that the
system is capable to distinguish the �ve strongest inputs from the other 95 after
�ve switches.

Our results show how non-trivial switching dynamics underlies reliable com-
putation in network dynamical systems. Future studies on di�erent computation
strategies in complex systems and the study of the interactions of their mechanisms
may lead to new ideas on how more complex computations are performed by collec-
tive dynamics. In particular, as a possible direction of future research we consider
the interaction of short-term and long term-memory in bio-inspired systems (pulse-
coupled oscillator networks) to generate complex dynamics with di�erent aspects
than the ones presented by each network alone. As an initial step, we could extend
the autonomous agent model to implement both, short- and long-term memory
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in di�erent scenarios in order to study nontrivial emergent behavior. Whereas
the short-term memory could held working memory processes exploiting saddle-
induced switchings, the long-term memory could make use of stable attractors in
order to recover, correct and store new items.

The most interesting example of a complex system acting as a computer is the
brain. Many animal functions are dependent in the collective dynamics of neuronal
units. It is reasonable to assume that highly complex behavior, for example reason-
ing, arises from the interactions of di�erent neuronal circuits, possibly presenting
distinct dynamical features. Thus, the study of new computational properties of
bio-inspired networks are not only interesting in itself but also from this broader
perspective of circuitry interactions. We hope that by presenting complex switching
dynamics as a new computation paradigm, we contribute with a small step towards
a better understanding of complex behavior in biological and arti�cial systems.





Appendix A

Periodic orbits: non-perturbed

system

In Chapter 4 we introduced three unstable periodic orbits, clustered states with
symmetries S3×S2, S4×S1 and S2×S2×S1. Here we illustrate those orbits in the
potential representation for all coordinates, V = (V1, V2, V3, V4, V5) in state space.
Each �gure presents two superposed plots: the �rst displays real data point from
the simulations as small consecutive circles (Red); the second is an interpolation of
such data points (Green), included in order to explicitly show the relation between
points far apart due to the discontinuous reset and due to the instantaneous jumps
in the potential of the oscillators each time a pulse is received. In all �gures the
potential of the unstable cluster is used as the horizontal coordinate.

Figure A.1: Periodic orbit for cluster symmetry S3×S2. Red circles represent data
points from the simulations; Green line is the interpolation of the data points, showing
the relation between points far apart due to the discontinuous reset of the oscillators and
phase jumps. (τs = 1.01002, ε = 0.025, I = 1.04, γ = 1).
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Figure A.2: Periodic orbit for cluster symmetry S4×S1. Red circles represent data
points from the simulations; Green line is the interpolation of the data points, showing
the relation between points far apart due to the discontinuous reset of the oscillators and
phase jumps. (τs = 0.64743, ε = 0.0015, I = 1.1, γ = 1).

Figure A.3: Periodic orbit for cluster symmetry S2×S2×S1. Red circles represent
data points from the simulations; Green line is the interpolation of the data points, show-
ing the relation between points far apart due to the discontinuous reset of the oscillators
and phase jumps. (τs = 1.59646, ε = 0.025, I = 1.04, γ = 1).



Appendix B

Partial derivatives

Here we present the analytical expressions for the non-zero elements of the Jacobian
matrices introduced on Chapter 5. We here use the short notation

xy = Hy(x), (B.1)

with x ∈
{
0, τ, (τ − τ

′
), (τ − τ

′
+ τ

′
y)

}
and y ∈ {ε, 2ε, 3ε}.

S3× S2: non-zero elements for the Jacobian matrix
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]
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S4× S1: non-zero elements for the Jacobian matrix
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S2× S2× S1: non-zero elements for the Jacobian matrix
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Appendix C

Unperturbed orbits: return maps

Here we explain step by step the periodic orbit dynamics introduced in Chapter
4. We introduce and describe the return maps that de�ne the three families of
orbits. The event sequences are displayed in Tables C.1, C.3, C.4 and C.6. The
event notation is: σi indicates that oscillator i elicited a pulse; ρi indicates that
a pulse coming from the oscillators i is received by the other oscillators; capital
letters indicate constants; Hε(φ) is the transfer function introduced in Chapter 3;
and pi,j is a short notation for the phase of oscillator i at event number j.

Speci�c realizations of the general descriptions of the orbits dynamics are pre-
sented in tables C.2, C.5 and C.7. As there are no approximations to the corre-
sponding analytical event sequences, the speci�c values completely agree with the
iterated simulation in Figures 5.1, 5.3 and 5.5.

Unperturbed S3 × S2 orbit

The initial condition is such that no pulse was sent before time zero. At time zero,
the �rst event takes place, that is, oscillators one, two and three elicit one pulse
each (σ123); the second event is the reception of these pulses at τ time later (ρ123),
that simultaneously is an supra-threshold event to oscillators four and �ve. This
supra-threshold event induce oscillators four and �ve to elicit a pulse each (σ45) in
the same instant they are reset. The third event is the reception of pulses coming
from oscillators four and �ve (ρ45). And the last event is the reset of oscillators
one, two and three (σ123) by reaching the threshold.

Table C.1: Analytic table of condition for an unperturbed S3 × S2 orbit, S3 unstable.

event time φ1, φ2, φ3 φ4, φ5 event num.
σ1,2,3 0 0 A 0
ρ1,2,3;σ4,5 τ H2ε (τ) = p1,1 H3ε (A + τ) > 1 → 0 1
ρ4,5 2τ H2ε (p1,1 + τ) = p1,2 Hε (τ) = p4,2 2
σ1,2,3 2τ + 1− p1,2 1 → 0 p4,2 + 1− p1,2 3

For any choice of the parameters resulting in A = p4,2 + 1− p1,2 (while preserv-
ing the event sequence), we have a period-one attractor, since the initial state is
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obtained after one pulse of each oscillator. A numerical example of such a struc-
ture is presented in table C.2. From this map, we can conclude that the cluster
S2 is stable, since any small variation will be restored when its elements are reset
together by the incoming pulse.

Table C.2: Analytic prediction of phase dynamics for parameters τ = 0.31, ε = 0.025,
I = 1.04 and γ = 1, realizing a S3 × S2 cycle.

event time φ1, φ2, φ3 φ4, φ5 event num.
σ1,2,3 0.000000 0.000000 0.501612 0

ρ1,2,3;σ4,5 0.310000 0.353450 0.000000 1
ρ4,5 0.620000 0.829344 0.330956 2

σ1,2,3 0.790655 0.000000 0.501612 3

Unperturbed S3 × S2 orbit, S2 unstable

This map describe the partner orbit of table C.1, since they coexist for the same
range of the parameter, but for di�erent initial conditions. The initial condition
here is such that pulses coming from oscillators four and �ve are received (ρ(4,5))
at time equal zero, forcing oscillators one, two and three to elicit one pulse each
(σ1,2,3), already de�ning the �rst event. The second event is the reception of these
pulses (ρ1,2,3) τ time later. The third event is the reset of oscillators number four
and �ve upon reaching the threshold (σ4,5), and the consequent generation of two
new pulses. The last event is the reception of these new pulses (ρ4,5), causing
oscillators one, two and three to elicit one pulse each (σ1,2,3). In this case the
S3 cluster is stable, since any small variation on the phase of its components will
disappear in the next cycle when all its elements are reset at the same time by the
incoming pulses.

Table C.3: Analytic table of condition for an unperturbed S3 × S2 orbit, S2 unstable.

event time φ1, φ2, φ3 φ4, φ5 event num.
ρ(4,5);σ1,2,3 0 0 C 0
ρ1,2,3 τ H2ε (τ) = p1,1 H3ε (C + τ) = p4,1 1
σ4,5 1− p4,1 1 + p1,1 − p4,1 = p1,2 1 → 0 2
ρ4,5;σ1,2,3 τ + 1− p4,1 H2ε (p1,2 + τ) > 1 → 0 Hε (τ) 3

Unperturbed S4 × S1 orbit

This map describes another period-one attractor, where no pulse was sent before
time zero. The �rst event is set as elicited pulses by oscillators one, two, three
and four (σ1,2,3,4). The second event is the reception of these pulses after τ time
(ρ1,2,3,4), which makes oscillator number �ve to elicit one pulse due to this supra-
threshold input (σ5). The third event is the reception of this last pulse at time 2τ
(ρ5). The last event is the pulse generation from oscillators one, two, three, and
four upon reaching the threshold. A numerical example of this orbit structure is
presented in table C.5.
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Table C.4: Analytic table of condition for an unperturbed S4 × S1 orbit.

event time φ1, φ2, φ3, φ4 φ5 event num.
σ1,2,3,4 0 0 B 0
ρ1,2,3,4;σ5 τ H3ε (τ) = p1,1 H4ε (B + τ) > 1 → 0 1
ρ5 2τ Hε (p1,1 + τ) = p1,2 τ 2
σ1,2,3,4 2τ + 1− p1,2 1 → 0 τ + 1− p1,2 3

Table C.5: Analytic prediction of phase dynamics for parameters τ = 0.27, ε = 0.0015,
I = 1.1 and γ = 1, realizing a S4 × S1 cycle.

event time φ1, φ2, φ3, φ4 φ5 event num.
σ1,2,3,4 0.000000 0.000000 0.672908 0

ρ1,2,3,4;σ5 0.270000 0.303940 0.000000 1
ρ5 0.540000 0.597091 0.270000 2

σ1,2,3,4 0.942909 0.000000 0.672908 3

Unperturbed S2 × S2 × S1 orbit

For this map, the initial conditions are such that pulses from oscillators three
and four will be received at time τ

′
after time zero. The �rst event is the pulse

generation from oscillators one and two upon reaching the threshold (σ1,2). The
second event is the reception of pulses from oscillators three and four (ρ(3,4)) at time
τ

′
and the pulse generation by oscillator �ve (σ5) caused by this supra-threshold

input. The third event is the reception of pulses coming from oscillators one and
two (ρ1,2) at time τ that forces oscillators three and four to elicit a pulse each (σ3,4).
The forth event is the reception of the pulse coming from oscillator �ve (ρ5). The
last event is the pulse generation by oscillators one and two (σ1,2) upon reaching
the threshold.

Table C.6: Analytic table of condition for an unperturbed S2 × S2 × S1 orbit.
event time φ1, φ2 φ3, φ4 φ5 event

num.

σ1,2 0 0 D E 0

ρ(3,4); σ5 τ
′

H2ε (τ ) = p1,1 Hε

“
D + τ

′
”

= p3,1 H2ε

“
E + τ

′
”

> 1 → 0 1

ρ1,2; σ3,4 τ Hε

“
p1,1 + τ − τ

′
”

= p1,2 H2ε

“
p3,1 + τ − τ

′
”

> 1 → 0

H2ε

“
τ − τ

′
”

2

ρ5 τ + τ
′

Hε

“
p1,2 + τ

′
”

= p1,3 Hε

“
p3,2 + τ

′
”

= p3,3 p5,2 + τ
′
= p5,3 3

σ1,2 τ+τ
′
+1−

p1,3

1 → 0 p3,3 + 1− p1,3 p5,3 + 1− p1,3 4

Table C.7: Analytic prediction of phase dynamics for parameters τ = 0.49, ε = 0.025,
I = 1.04 and γ = 1, realizing a S2 × S2 × S1 cycle.

event time φ1, φ2 φ3, φ4 φ5 event num.
σ1,2 0.000000 0.000000 0.381978 0.795680 0

ρ(3,4);σ5 0.119095 0.141656 0.541358 0.000000 1
ρ1,2;σ3,4 0.490000 0.554491 0.000000 0.424775 2

ρ5 0.609095 0.748191 0.130168 0.543870 3
σ1,2 0.860904 0.000000 0.381978 0.795680 4

This map implies three periodic conditions to describe a period-one attractor:
D = p3,3 + 1− p1,3, E = p5,3 + 1− p1,3, and τ = 2τ

′
+ 1− p1,3. A example of this

structure is presented in table C.7.



Appendix D

Perturbed orbit dynamics: return

maps.

Here we present three tables that show the changes to the periodic orbit dy-
namics shown in tables C.1, C.4 and C.6 after an incremental perturbation δ =
(0, δ2, δ3, δ4, δ5), where 0 < δ2 < δ3 < δ4 < δ5 � 1. For all three orbits, without
lost of generality, oscillator one was taken as the referential phase to de�ne the
new cycle, since this doesn't a�ect the perturbed orbit dynamics itself but only the
point of reference. The notation used here is the same as in C.
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78 APPENDIX D. PERTURBED ORBIT DYNAMICS: RETURN MAPS.
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