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Abstract

Pulse-coupled systems such as spiking neural networks exhibit nontrivial invariant sets in the

form of attracting yet unstable saddle periodic orbits where units are synchronized into groups.

Heteroclinic connections between such orbits may in principle support switching processes in those

networks and enable novel kinds of neural computations. For small networks of coupled oscillators

we here investigate under which conditions and how system symmetry enforces or forbids certain

switching transitions that may be induced by perturbations. For networks of �ve oscillators we

derive explicit transition rules that for two cluster symmetries deviate from those known from

oscillators coupled continuously in time. A third symmetry yields heteroclinic networks that

consist of sets of all unstable attractors with that symmetry and the connections between them.

Our results indicate that pulse-coupled systems can reliably generate well-de�ned sets of complex

spatiotemporal patterns that conform to speci�c transition rules. We brie�y discuss possible

implications for computation with spiking neural systems.
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Introduction

Heteroclinic connections among saddle states are known to support non-trivial switching
dynamics in networks of units coupled continuously in time [1�5]. Interesting recent work
furthermore suggests that heteroclinic networks in state space may be used to encode a large
number of spatiotemporal patterns if the transition between di�erent states is controllable
[6]. Supplementing such systems with certain additional features may thus enable a new
kind of computation [7].

Networks of pulse-coupled oscillators, that model, e.g., the dynamics of spiking neural
networks, constitute hybrid systems that are very distinct from systems coupled continuously
in time. In pulse-coupled hybrid systems pulses interrupt the otherwise smooth time
evolution at discrete event times when pulses are sent or received. Such networks may
exhibit unstable attractors [8], unstable saddle periodic orbits that are attractors in the
sense of Milnor [9]. Recent works indicate that unstable attractors may generically occur
in systems with symmetry [10, 11] and that such saddle periodic orbits may be connected
to heteroclinic networks in a standard way, but with some anomalous features [12, 13].
In particular, due to the attractor nature of the periodic orbits, switching among saddles
requires external perturbations. It was known before that in non-hybrid systems with non-
attracting saddles, such perturbations may in principle direct the switching path. In this
work we study under which conditions and precisely how small controlled perturbations
can exploit heteroclinic connections in pulse-coupled systems to support switching processes
among saddle states, a key prerequisite for computation by heteroclinic switching.

The results may be of particular relevance for neural systems where pulses are electric
action potentials (spikes) generated by neurons because spatiotemporal switching patterns
of spikes have been suggested to underly information processing [14, 15].

This article is divided into four main sections. After introducing the model and explaining
our analytical approach in the �rst section, in the second we present the most persistent
attractors and their symmetries. In the third section, we derive the dynamic response of the
system to single oscillator perturbations and provide a local stability analysis. Finally, we
conclude discussing the relation between switching processes in the pulse-coupled systems
considered to those in systems coupled continuously in time. We also brie�y discuss potential
implications for neural coding and paths to future investigations.

I. Pulse-coupled network

Consider a network of N oscillators that are connected homogeneously all-to-all without
self-connections through delayed pulse-couplings. The state of each oscillator i ∈ {1, . . . , N}
at time t is speci�ed by a single phase-like variable φi(t) [16]. In the absence of interactions,
its dynamics is given by

dφi
dt

= 1, 0 ≤ φi ≤ 1. (1)

When oscillator i reaches a threshold, φi(t
−) = 1, its phase is reset to zero, φi(t) = 0, and

the oscillator is said to send a pulse. Such pulse is sent to all other oscillators which receive
this signal after a delay time τ . The incoming signal induces a phase jump

φi (t) = Hε(φi(t
−)) = U−1

[
U
(
φi(t

−)
)
+ ε
]
, (2)

2



which depends on the instantaneous phase φi(t
−) of the post-synaptic oscillator and the

excitatory coupling strength ε > 0. The phase dependence is determined by a twice
continuously di�erentiable potential function U(φ) that is assumed to be strictly increasing
(U

′
(φ) > 0), concave down (U

′′
(φ) < 0), and normalized such that U(0) = 0, U(1) = 1. As

shown in [8, 17], this phase dynamics is equivalent to the ordinary di�erential equations

dVi
dt′

= f(Vi) + Si(t
′
), (3)

where

Si(t
′
) =

N∑
j=1
j 6=i

∑
k∈Z

εδ
(
t− τ ′ − t′jk

)
, (4)

is a sum of delayed δ-currents induced by presynaptic oscillators. Oscillator j sends its kth
pulse at time t

′

jk whenever its phase variable crosses threshold, Vj(t
′−
jk ) ≥ 1; thereafter, it

is instantaneously reset, Vj(t
′

jk) → 0. The kth pulse of oscillator j is received by i after a

delay τ
′
. The positive function f(V ) > 0 yields a free (Si(t

′
) ≡ 0) solution Vi(t

′
) := V (t

′
) =

V (t
′
+ T0) of intrinsic period T0. The above function U(φ) is related to this solution via

U (φ) = V (φT0) , (5)

de�ning a natural phase φ by rescaling the time axis, t = t
′
/T0 and τ = τ

′
/T0.

We focus on the speci�c form U (φi) = UIF (φi) = Ii
γ

(
1− e−φiTIF

)
that represents the

integrate-and-�re oscillator de�ned by f(V ) = I − γV . Here I > 1 is a constant external

input and TIF = 1
γ
log
(
1− γ

I

)−1
the intrinsic period of an oscillator. Any U(φ) su�ciently

close to UIF (φ) give qualitatively similar results.
After de�ning the dynamics of the network elements we can de�ne its collective state as

a phase vector,
φ = (φ1, φ2, . . . , φN) , (6)

where each φi describes the phase of oscillator i. Their dynamics is governed by (1) and (2).
The di�erence in phase among them will de�ne the macroscopic states of the network, as
explained in the next section.

The event-based updating presented above brings two main advantages: It yields exact
analytical solutions of state space trajectories and substantially reduces the simulation time
compared to numerical integration with �xed small time steps.

II. Periodic orbit dynamic and symmetries

Here we de�ne and explicitly study the dynamics of partially synchronized states, periodic
orbits where groups of oscillators are identically synchronized into clusters, for three main
symmetries of N = 5 oscillators. The analysis reveals mechanisms of perturbation-induced
switching transitions that critically depend on the local stability properties of cluster periodic
orbits. As we show below, stability in turn is determined by whether a cluster receives only
sub-threshold input during one period (�unstable� cluster) or it also receives supra-threshold
input (�stable� cluster), the only two options available. Thus, similar switching mechanisms
for a given symmetry will prevail also for larger N , cf [17], and contribute to much more
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complex saddle state transitions, cf �gure 6. As shown in the last section, when a constant
external input I to a single oscillator i is su�ciently strong to drive the membrane potential
to cross its threshold (U

′
> 0), the potential dynamics becomes periodic with period T0.

It was known before that networks of such pulse-coupled oscillators may exhibit di�erent
invariant states including partially synchronized states [5, 8, 9, 18, 19].

To explore the possible unstable attractors we systematically varied the parameters and
the initial conditions for our system and found numerically that three clustered states present
those state symmetries most persistent to perturbations. Two of these states are composed
of two clusters, with permutation symmetries S3×S2 and S4×S1, respectively; another one is
composed of two clusters and one single element, with permutation symmetry S2×S2×S1.
The event-based analyses of these states is based in return maps that are presented in
detail in tables I, III, IV and VI. For each of these three cluster periodic orbits, the event
sequence of sending and reception of pulses fully de�nes the type of periodic orbit such that
the analytical conditions for existence of a family of such orbits can be directly read from
these tables. In particular, these three families of periodic orbits exist for an open set of
parameters close to the three examples numerically speci�ed in tables II, V and VII. The
existence conditions for each periodic orbit naturally imply that the phases of all oscillators
exactly return to the same value after a �xed period; at the same time, the prede�ned event
sequence must be kept.

Throughout this work, we represent the dynamical states relative to the symmetries
S3 × S2, S4 × S1 and S2 × S2 × S1, respectively, by the phase vectors

φ = (a, a, a, b, b) , (7a)

φ = (a, a, a, a, b) , (7b)

φ = (a, a, b, b, c) , (7c)

where each element represents one oscillator and the letters indicate to which cluster it
belongs. In these periodic orbits the di�erences in phase (a− b), (a− c) and (b− c) will
change in time in a periodic manner, while the cluster con�guration remains the same. In
this notation the elements labeled as 'a' belong to an unstable cluster, as 'b' to a stable
cluster, while 'c' represents a single element that reacts stably to small perturbations (see
below).

It is important to emphasize that this system exhibits symmetric connections and that
the parameters, I, γ, ε and τ , are global (see section I). As a consequence, the initial
condition controls the �nal attractor and determines which of the permutation-equivalent
states is obtained. By the same symmetry argument, the number of permutation-equivalent
con�gurations for each state symmetry is given by the number of ways we can form the
vectors presented above, which results in 10, 5, and 30 states, respectively. In the next
section we study the stability of these cluster states and the possible state transitions among
them in the presence of small perturbations.

III. Stability and switching properties

In this section we will study, case by case, the dynamics and stability of cluster periodic
orbits presented in the last section. First we show that these periodic orbits actually are
unstable attractors, and later we study the possible transitions between di�erent states in
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response to small perturbations.
To study the local stability of these attractors, we introduce a perturbation vector,

δ(n) = (δ2(n), δ3(n), δ4(n), δ5(n)) , (8)

that has four components since only the relative phases among the oscillators are relevant
(δ1(n) ≡ 0). The analysis presented here consists of a study of the temporal evolution of
this perturbation vector at each cycle. Thus,

δi(n) := φi(t1,N)− φ∗i (t) (9)

are the perturbations to phases on the periodic orbit just after oscillator one has sent its
nth pulse and been reset, i.e. δi ≡ 0.

After a small enough initial perturbation that is added to the phase vector at some point
of the unperturbed dynamic, the temporal evolution of the perturbation vector is de�ned
as the di�erence between this perturbed vector after one cycle of the system dynamic and
the unperturbed phase vector at the same time. Analytically tracking the periodic orbit
dynamics (cf tables I, IV, and VI) yields the perturbation perturbation vector after one
cycle as a function of the perturbation in the previous cycle,

δ(n+ 1) = F (δ(n)) , (10)

which can be linearly approximated by

δ(n+ 1)
.
= Jδ(n), (11)

where J is the Jacobian matrix at δ(n) = 0, describing the local dynamics.
After analyzing the local stability properties, we study non-local e�ects in response to

single oscillator perturbations. The procedure consists of perturbing only one oscillator at
each time. We consider negative perturbations, instantaneous decrements on the phase, and
positive ones, instantaneous increments on the phase. When possible, transition diagrams
are included.

A. Clustered state S3 × S2
For the clustered state S3 × S2 we have the temporal evolution for the vector δ in one

cycle, (cf tables VIII and I) assuming δ2 < δ3, and δ4 < δ5, given by:

δ(n+ 1) = φ− (0, 0, A,A) (12)

where φ is the phase vector given by the last row of table VIII and the vector (0, 0, A,A)
represents the unperturbed cycle (see table I). By (11) and (12), we obtain the following
Jacobian matrix:

∂δ(n+ 1)

∂δ(n)

∣∣∣∣
δ(n)=0

=


α 0 0 0
j21 β 0 0
γ j32 0 0
γ j42 0 0

 , (13)

where α, β, and γ are positive reals larger than one, j32 and j42 are positive, and j21 is
much smaller than the other elements (for analytical expressions of the partial derivatives
refer to A). This matrix has two zero eigenvalues with eigenvectors that correspond to the
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FIG. 1. Example of perturbation-induced switching in a S3×S2 state set. The response of the system to a

sequence of �ve negative single oscillator perturbations preserving a S3 × S2 clustered symmetry (τ = 0.31,

ε = 0.025, I = 1.04, γ = 1). The phases of all oscillators are plotted at the moment when oscillator 1 is

reset, each color representing the phase of one oscillator. There are transitions through two steps, where

in a �rst moment the cluster S3 is unstable, after one perturbation (as shown by the second and fourth

perturbation) it reaches a new con�guration with the cluster S2 in a unstable phase position, a second

perturbation (as shown in the �rst, third and �fth perturbations) is needed to put the system in the initial

phase di�erence again, maintaining the cluster components but changing its stability. The symmetry of

the unstable attractors are preserved. The sequence of states given by the plateaus are (a, a, b, b, a)∗ →
(a, a, b, b, a) → (b, b, a, a, a)∗ → (b, b, a, a, a) → (a, a, a, b, b)∗ → (a, a, a, b, b), where the star indicate the

states where S2 is in a unstable phase.

directions of δ4 and δ5; and two non-zero eigenvalues given by,

λ1 = α =
[
−1 +

[
1 +H

′

ε(τ)
]
H

′

ε(Hε(τ))
]
H

′

2ε(τ +H2ε(τ)) (14)

λ2 = β =
[
−1 + 2H

′

ε(τ)
]
H

′

ε(Hε(τ))H
′

2ε(τ +H2ε(τ)), (15)

where

H
′

ε(φ) =
∂

∂φ
U−1 (U(φ) + ε) . (16)

Here λ1 and λ2 are larger than one (see Lemma 1), noticing that all terms are due to
sub-threshold events. Thus a perturbation can e�ectively disturb the system in two di�erent
possible directions, showing that the cluster S2 is stable and the S3 is unstable.

Lemma 1. If Hε(φ) given by (2) mediates a sub-threshold reception event and ε > 0, U
′
(φ) >

0, and U
′′
(φ) < 0, then H

′
ε(φ) > 1.
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Proof. Assume ε > 0. By de�nition

H
′

ε(φ) =
∂

∂φ
U−1 (U(φ) + ε) =

U
′
(φ)

U ′ (U−1(U(φ) + ε))
=

U
′
(φ)

U ′ (Hε(φ))
,

Since U
′
(φ) is a monotonic decreasing function and Hε(φ) > φ we have U

′
(φ) > U

′
(Hε(φ))

for any Hε(φ), and consequently H
′
ε(φ) > 1.

Now we describe the long-term e�ect of a single oscillator perturbation to the unstable
cluster S3. A negative perturbation to one of the elements on the unstable cluster (φ+ =
(a, a, a− δ3, b, b)) puts one of its elements phase slightly behind; then the initial stable
cluster S2 begins to receive an additional pulse just after it is reset, increasing its relative
phase in each cycle, and thus approaching the phase of the elements in the originally stable
cluster. After some cycles it �nally joins that cluster by a simultaneous reset, forming a
new S3 × S2 clustered state. This switching process is illustrated just after the second and
fourth perturbations in �gure 1. The �nal state has the same symmetry as the initial state,
but has di�erent stability properties: Whereas the orbit is stable to splitting the S3 cluster,
it is unstable to splitting the S2 cluster and upon perturbation resynchronizes and shifts in
phase with respect to the cluster S3 (see table III). A further perturbation to the cluster S2

does not change the elements of each cluster but just returns the system to the initial phase
di�erence, as illustrated in the �rst, third and �fth perturbations in �gure 1.

Intriguingly, positive perturbations φ+ = (a, a, a+ δ3, b, b)) result in a completely
di�erent dynamic, as can be seen in �gure 2 which presents a sequence of three negative
and two positive perturbations. A positive perturbation puts just one oscillator from the
unstable cluster ahead, that now increases its phase in relation to its original cluster in
each cycle till it begins to be reset by pulses coming from the originally stable cluster. The

FIG. 2. Example of symmetry change by perturbation-induced switching. A sequence of three negative

and two positive single oscillator perturbations (same parameters as in �gure 1). Showing that the positive

perturbations splits the unstable cluster until the system reach some periodic orbit. The symmetry is not

preserved.
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original S2 cluster changes its phase to conform with this new pulse con�guration, but still
been reset by pulses coming from the two elements left on the unstable cluster. Thus the S3

cluster splits into two clusters, and the new con�guration becomes S2 × S2 × S1. A further
perturbation puts the system in a stable cyclic state.

Hence the symmetry S3 × S2 is not preserved upon a general perturbation. however,
simulations suggest that if we only consider negative single oscillator perturbations, or one
negative perturbation with a larger magnitude than the others, the symmetry is preserved,
and it is possible to write a transition rule,

(a− δ1, a, a, b, b)→ (a, b, b, a, a), (17)

that permits us to know which will be the next state after one perturbation

B. Clustered state S4 × S1
Considering now the S4×S1 symmetry, assuming δ2 < δ3 < δ4 and δ5 > 0, in an procedure

analogous to that in the last section, we obtain the following Jacobian matrix (see last row
of tables IX and IV):

∂δ(n+ 1)

∂δ(n)

∣∣∣∣
δ(n)=0

=


α 0 0 0
j21 β 0 0
j31 j32 γ 0
j41 j42 θ 0

 , (18)

here α, β, γ, and θ are larger than one, j41, j42 are positive, and j21, j31, and j32 are much
smaller than the other elements (see A). This matrix has one zero eigenvalue, corresponding
to the single element represented by S1 and three non-zero eigenvalues given by

λ1 = α =
[
−1 +

[
1 +H

′

ε(τ)H
′

ε (Hε(τ))
]
H

′

ε (H2ε(τ))
]
H

′

ε (τ +H3ε(τ)) , (19)

λ2 = β =
[
−1 +

[
1 +H

′

ε(τ)
]
H

′

ε (Hε(τ))
]
H

′

ε (H2ε(τ))H
′

ε (τ +H3ε(τ)) , (20)

λ3 = γ =
[
−1 + 2H

′

ε(τ)
]
H

′

ε (Hε(τ))H
′

ε (H2ε(τ))H
′

ε (τ +H3ε(τ)) . (21)

Using the same argument as in the last section (see lemma 1), these three eigenvalues are
necessarily larger than one (λ1, λ2, λ3 > 1), showing the instability of the cluster S4.

Again we study the e�ect of single oscillator perturbations. As can be seen in �gure 3,
positive perturbations to an element of the unstable cluster S4 put one element from the
unstable group ahead. This di�erence in phase will increase each cycle, since pulses received
at larger phases more strongly shift the oscillator's phase; at the same time the S1 element is
not only reset by the other oscillators pulses, but also receives additional pulses that makes
its phase approach the unstable cluster. After some cycles, the element S1 joins the original
unstable cluster, forming a new S4 cluster while the perturbed oscillator forms the new
S1, returning the system to its original phase di�erence and symmetry, but with di�erent
elements composing the clusters.

When a negative perturbation is applied (see �gure 4) the element perturbed is put
backwards, and as before the elements ahead increase the di�erence in phase in relation to
the perturbed element; at each cycle, after being reset, the original S1 element receive an
additional pulse coming from the perturbed element, increasing its phase. After some cycles
this increase makes the S1 element to join the perturbed element, forming a new cluster S2.
The new con�guration becomes S3×S2, where S3 is unstable. A second perturbation to the
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FIG. 3. Example of perturbation-induced switching in a S4 × S1 state set. A sequence of four positive

single oscillator perturbations preserving a S4 × S1 clustered state (τ = 0.27, ε = 0.015, I = 1.1, γ = 1).

The phase of all oscillators are plotted each time oscillator 1 is reset, each color represents the phase of one

oscillator. The perturbed oscillator leaves the cluster S4 and replaced the S1 oscillator, that join the cluster

S4, preserving the symmetry. The sequence of states corresponding to the plateaus are (a, a, a, a, b) →
(a, b, a, a, a)→ (a, a, b, a, a)→ (a, a, a, b, a).

FIG. 4. Example of symmetry change by perturbation-induced switching. A sequence of three negative

single oscillator perturbations for the same parameter used on �gure 3. The perturbed oscillator joins the

S1 oscillator, forming a S2 cluster, new perturbations led �rst to an S3 × S2 con�guration and later to split

the clusters reaching a stable attractor. The symmetry is not preserved.
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S3 cluster moves the perturbed element to the cluster S2. A last perturbation can either put
the system in its initial con�guration or split the cluster into two, depending on the position
on the periodic orbit it is applied. The symmetry of this state is obviously not preserved for
negative perturbations, and computer simulations indicate that more general perturbations
bring an even more complicated switching dynamic due the large number of elements in the
unstable cluster.

Considering only single positive perturbations, we can state a transition rule between two
states when subject to a single positive perturbation,

(a+ δ1, a, a, a, b)→ (b, a, a, a, a). (22)

Under these considerations, the resulting transition diagram is a fully connected one, and it
is possible to jump from one equivalent permutation state to any other one applying only
one perturbation.

C. Clustered state S2 × S2 × S1
For the symmetry S2 × S2 × S1, assuming δ3 < δ4 and δ2, δ5 > 0, we have the following

Jacobian matrix:

∂δ(n+ 1)

∂δ(n)

∣∣∣∣
δ(n)=0

=


α 0 0 0
β 0 0 0
β 0 0 0
γ 0 0 0

 , (23)

where α > β > γ > 0 (see A), cf tables X and IV. This matrix has three zero eigenvalues
and only one non-zero eigenvalue given by

λ1 = α = H
′

ε

(
τ

′
+Hε

(
τ − τ ′

+H2ε(τ
′
)
)) [
−1 +H

′

ε

(
τ − τ ′

+H2ε(τ
′
)
) [

1 +H
′

2ε(τ
′
)
]]
,

(24)

which is larger than one accordingly to Lemma 1. The fact that there is only one eigenvalue
and that it is larger than one not only shows that there is only one unstable cluster, but
also that perturbations change only the di�erence in phase between the two elements on
this cluster. As a result, any general perturbation can be mapped to a single oscillator
perturbation.

Di�erently from the last two considered symmetries, we here have one single element,
one stable S2 clusters, and one symmetric unstable S2 cluster. When perturbed, the initial
unstable cluster S2 splits into two, the additional pulse received now by the initial single
S1 element just after its reset makes it approaches the element that was put behind on the
unstable S2 cluster, forming a new stable S2 cluster. This occurs because it is reset by
supra-threshold pulses. Moreover the element ahead begins to be reset by pulses and stops
increasing its phase, becoming stable and the original stable S2 cluster after changing its
phase, is not reset by pulses anymore, becoming unstable. The �nal state has the same
symmetry and stability properties as the former state.

The preservation of the symmetry implies a closed transition diagram among all the
possible S2 × S2 × S1 states (see �gure 6). We state two simple equivalent switching rules.
Considering �rst a positive representation we have

(a, a+ δ2, b, b, c)→ (c, b, a, a, b) (25)
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FIG. 5. Example of perturbation-induced switching in a S2 × S2 × S1 state set. A sequence of �ve

perturbations driving the system through di�erent states with symmetry S2 × S2 × S1 (τ = 0.49,ε =

0.025,I = 1.04,γ = 1). The phase of all oscillators are plotted at the moment when oscillator number one

is reset, each color representing the phase of one oscillator. The apparent change of the phase di�erences

among the clusters just after the perturbations depends on the cluster to which the reference oscillator

belongs. The symmetry of the unstable attractors is preserved. The sequence of states corresponding to the

plateaus are (a, a, b, b, c)→ (b, c, a, a, b)→ (a, b, b, c, a)→ (b, a, a, b, c)→ (a, c, b, a, b)→ (b, b, a, c, a).

that can be rewritten for negative perturbations simply as

(a− δ1, a, b, b, c)→ (c, b, a, a, b). (26)

We conclude that for this symmetry the unstable attractors are linked to form a
heteroclinic network (�gure 6), characterized by (25) and (26), forming a closed set of
saddle periodic orbits among which the systems switches in a controlled way upon small
external perturbations. We remark that in the absence of noise this dynamic does not
exhibit spontaneous transitions between nearby saddle states [12, 13] but instead displays
convergence to unstable attractors. The free dynamic of each element evolves continuously
up to reset; still, the collective dynamic of the entire network (network state) evolves
continuously almost always, but interrupted by discrete jumps due to the in�nitely fast
phase response of the interaction. As (i) the transitions are fully controlled by external
perturbations and thus predictable, and (ii) the symmetry is preserved when the network
is subject to su�ciently small, general perturbations, arbitrarily small external noise would
trigger a persistent switching dynamic in which the network states are constrained to the
closed set of periodic orbits with initial S2×S2×S1 symmetry. A numerical example of this
spontaneous switching phenomenon has been reported before [17] for a system of N = 100
oscillators exhibiting S21 × S21 × S21 × S21 × S16 symmetry.
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FIG. 6. Five steps state transition diagram for the symmetry S2 × S2 × S1. This diagram shows

all the possible 5 steps paths, sequence of states, beginning on the state {a,b,c,b,a}. Each arrow

correspond to one of the two possible perturbations, subject to (25) and (26). It is necessary at

least 5 perturbations to reach the initial state again.

IV. Discussion

In the networks of pulse-coupled oscillators studied above, three sets of heteroclinically
connected unstable attractors appear to have a well-de�ned symmetry that depends on
the network parameters. Interestingly, for two state symmetries, the possible switching
transitions markedly deviate from those in time-continuously coupled systems [20]. Moreover,
all attractors with the third symmetry S2 × S2 × S1 form one closed heteroclinic network,
where all possible transitions are predictable and depend on the precise direction of the
perturbation. In fact, mapping an arbitrary small perturbation to a single oscillator
perturbation, we derived a general set of transition rules, (25) and (26). This last feature
guarantees that there are no changes of symmetry during the switching and precisely de�nes
a transition diagram (�gure 6) that holds for all su�ciently small perturbations.

Thus, this work explicitly shows how nontrivial switching dynamics is induced and
precisely controlled by perturbations in pulse-coupled systems. Our analysis shows that
and how event sequences, collectively generated by the network, fully determine switching
transitions in pulse-coupled oscillators. As a consequence, these results are not restricted
to the IF model (used here for numerical simulations and illustrating purposes) but equally
hold for di�erent oscillator models with sub-threshold potential dynamics that are su�ciently
close to the one considered here. Moreover, the phenomenon should still hold qualitatively
for temporally extended responses as long as the post-synaptic response times are short
compared to the membrane time constant and inter-spike-interval times. Nevertheless,
although we expect the same transition possibilities, the dynamics without noise will show
heteroclinic switching sequences that depend on the initial condition and do not require
external perturbations, cf [13]. As stability and instability of clusters re�ect synchronizing
and desynchronizing mechanisms [19], here realized by supra- and sub-threshold inputs,
respectively, similar switching features also occur in networks of N ≥ 6 pulse-coupled
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oscillators [17].
Since the systems studied here are pulse-coupled and of hybrid type, with smooth time

evolution interrupted at discrete times of interactions, it is interesting to compare our
results to those on systems of oscillators coupled continuously in time [6, 7]. The latter
systems exhibit partially synchronized saddle states with the same symmetry S2 × S2 × S1,
where a persistent switching dynamics appears as one feature of the model and, when
subject to asymmetric external currents, generates a wide variety of spatiotemporal patterns.
Interestingly, the transitions rules given by (25) and (26) (and illustrated on �gures 5
and 6) not only guarantee an equivalent persistent switching dynamic when subject to
noise, but also imply as well the existence of the same set of spatiotemporal patterns
when subject to asymmetric external currents. Thus, our model characterizes exactly
this switching dynamic in a pulse-coupled neuronal framework, where the patterns can
be described as distributed pulse-sequences (spike patterns). The importance of such a
spiking representation becomes evident in particular when considering potential applications
to neural coding and information processing [7]. For instance, studies on the olfactory system
of insects [21, 22] have shown that biological systems could use spatiotemporal spike patterns
as part of their information processing. In particular our results agree with the interesting
predictions of Hansel et al [2], Rabinovich et al [3], and Timme et al [8] regarding the
generation of spatiotemporal spike patterns based on a switching dynamics. In addition our
work presents a neural system where the entire (long-time) switching dynamics follows from
a �xed set of transition rules, a promising feature that may prove not only advantageous for
computation in biological but also in arti�cial systems.

We remark that although the apparent equivalence between the dynamics of pulse-coupled
oscillators and continuously coupled oscillators works for this speci�c symmetry, it does not
holds as a general rule. The most pronounced counter-examples are systems with symmetry
S3 × S2, which when smoothly coupled exhibit persistent switching dynamics, but when
pulse-coupled, any continuous small noise required for the switching necessarily drives the
system to a stable attractor, cf �gure 2.

To understand how these switching properties may actually perform computational tasks,
a complete analysis of the e�ect of asymmetric currents, driving pulses and asymmetric
connections on the spike patterns is needed. The answer to these controlling factors could
bring us important information about alternative mechanisms of neural computation, both
biological and arti�cial.
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A. Partial derivatives

Here we present the analytical expressions for the Jacobian matrices presented on section
II. Where we introduce a short notation Hy(x) → xy, for x ∈

{
0, τ, (τ − τ ′

), (τ − τ ′
+ τ

′
y)
}

and y ∈ {ε, 2ε, 3ε}
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1. S3× S2: non-zero elements for the Jacobian matrix (13)

α =
[
−1 +

[
1 +H

′

ε(τ)
]
H

′

ε(τε)
]
H

′

2ε(τ + τ2ε) (A1)

β =
[
−1 + 2H

′

ε(τ)
]
H

′

ε(τε)H
′

2ε(τ + τ2ε) (A2)

γ =
[
−1 +H

′

ε(0)
]
H

′

2ε(τ + 0ε) +H
′

ε (τε)H
′

2ε (τ + τ2ε) (A3)

j21 = −
[
1 +

[
−2 +H

′

ε(τ)
]
H

′

ε(τε)
]
H

′

2ε(τ + τ2ε) (A4)

j32 = j42 =
[
−1 +H

′

ε(τ)
]
H

′

ε(τε)H
′

2ε(τ + τ2ε) (A5)

2. S4× S1: non-zero elements for the Jacobian matrix (18)

α =
[
−1 +

[
1 +H

′

ε(τ)H
′

ε (τε)
]
H

′

ε (τ2ε)
]
H

′

ε (τ + τ3ε) (A6)

β =
[
−1 +

[
1 +H

′

ε(τ)
]
H

′

ε (τε)
]
H

′

ε (τ2ε)H
′

ε (τ + τ3ε) (A7)

γ =
[
−1 + 2H

′

ε(τ)
]
H

′

ε (τε)H
′

ε (τ2ε)H
′

ε (τ + τ3ε) (A8)

j31 = j21 = −
[
1 +

[
−2 +H

′

ε(τε)
]
H

′

ε(τ2ε)
]
H

′

ε(τ + τ3ε) (A9)

j41 = −
[
−1 +H

′

ε(0ε)
]
H

′

ε(02ε) +
[
−1 +H

′

ε(τε)
]
H

′

ε(τ + τε) (A10)

j42 = −
[
−1 +H

′

ε(0)
]
H

′

ε(0ε)H
′

ε(02ε) +
[
−1 +H

′

ε(τε)
]
H

′

ε(τ2ε)H
′

ε(τ + τ3ε) (A11)

θ = −1 +H
′

ε(0)H
′

ε(0ε)H
′

ε(02ε) +
[
1 +

[
−1 +H

′

ε(τ)
]
H

′

ε(τε)H
′

ε(τ2ε)
]
H

′

ε(τ + τ3ε) (A12)

3. S2× S2× S1: non-zero elements for the Jacobian matrix (23).

λ1 = α = H
′

ε

(
τ

′
+
(
τ − τ ′

+ τ
′

2ε

)
ε

) [
−1 +H

′

ε

(
τ − τ ′

+ τ
′

2ε

) [
1 +H

′

2ε(τ
′
)
]]
, (A13)

β = H
′

ε(0)H
′

ε(τ
′
+ 0ε) +H

′

ε

(
τ

′
+ (τ − τ ′

+ τ2ε)ε

) [
−1 +H

′

ε(τ − τ
′
+ τ

′

2ε)
]

(A14)

γ = −
[
−1 +H

′

ε(τ − τ
′
)
]
H

′

ε

(
(τ − τ ′

)ε

)
+H

′

ε

(
τ

′
+ (τ − τ ′

+ τ
′

ε)ε

) [
−1 +H

′

ε(τ − τ
′
+ τ

′

2ε)
]

(A15)

B. Return Maps

Here we explain step by step the periodic orbit dynamic described by the unperturbed
return maps that de�ne the three main families of attractors, given in tables I, III, IV and
VI. The event notation is the following: si indicates that oscillator i sent a pulse; ri indicates
that pulses were received coming from the oscillators indicated by i. Capital letters indicate
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constants, Hε(φ) is the transfer function presented on section 1, and pi,j is a short notation
for the phase of oscillator i at event number j.

A realization of the dynamics described by these tables are presented for speci�c
parameter in tables II, V and VII. As there are no approximation to the corresponding
analytical condition tables, the speci�c values completely agree with the iterated simulation
in �gures 1, 3 and 5.

Unperturbed S3 × S2 dynamic

The initial condition is such that no pulse was sent before time zero. At time zero, the
�rst event, oscillators 1, 2 and 3 �re (s123); the second event is the reception of these signals
a time τ later (r123), these is an supra-threshold event to oscillators 4 and 5, which then
send a signal (s45) and are reset; the third event is the reception of pulses from 4 and 5
(r45); and the last event is the reset of oscillators 1, 2 and 3 (s123) by reaching the threshold.
For any choice of the parameters resulting in A = p4,2 + 1− p1,2 (while preserving the event
sequence), we have a period-one attractor, since the initial state is obtained after one pulse
of each oscillator. A numerical example of such a structure is presented in table II. From
this map, we can conclude that the cluster S2 is stable, since any small variation will be
restored when its elements are reset together by the incoming pulse.

TABLE I. Analytic table of condition for an unperturbed S3 × S2 dynamic, S3 unstable.

event time φ1, φ2, φ3 φ4, φ5 event num.

s1,2,3 0 0 A 0

r1,2,3; s4,5 τ H2ε (τ) = p1,1 H3ε (A+ τ) > 1→ 0 1

r4,5 2τ H2ε (p1,1 + τ) = p1,2 Hε (τ) = p4,2 2

s1,2,3 2τ + 1− p1,2 1→ 0 p4,2 + 1− p1,2 3

TABLE II. Analytic prediction of phase dynamic for parameters τ = 0.31, ε = 0.025, I = 1.04 and

γ = 1, realizing a S3 × S2 cycle.

event time φ1, φ2, φ3 φ4, φ5 event num.

s1,2,3 0.000000 0.000000 0.501612 0

r1,2,3; s4,5 0.310000 0.353450 0.000000 1

r4,5 0.620000 0.829344 0.330956 2

s1,2,3 0.790655 0.000000 0.501612 3

Unperturbed S3 × S2 dynamic, S2 unstable

This map describe the partner orbit of table I, once they appear for the same range of the
parameter, but for di�erent initial conditions. The initial condition here is that pulses from
oscillators 4 and 5 are received (r(4,5)) exactly at time 0, forcing oscillators 1, 2 and 3 to �re
(s1,2,3), what de�ne the �rst event; the second event is the reception of these pulses (r1,2,3)
τ time later; the third event is the reset of oscillators 4 and 5 upon reaching the threshold
(s4,5), and consequently the generation of two new pulses; the last event is the reception of
these pulses (r4,5), which causes oscillators 1, 2 and 3 to generate one pulse (s1,2,3). In this

15



case the S3 cluster is stable, since any small variation on the phase of its components will
disappear in the next cycle when all are reset together by incoming pulses [10].

TABLE III. Analytic table of condition for an unperturbed S3 × S2 dynamic, S2 unstable.

event time φ1, φ2, φ3 φ4, φ5 event num.

r(4,5); s1,2,3 0 0 C 0

r1,2,3 τ H2ε (τ) = p1,1 H3ε (C + τ) = p4,1 1

s4,5 1− p4,1 1 + p1,1 − p4,1 = p1,2 1→ 0 2

r4,5; s1,2,3 τ + 1− p4,1 H2ε (p1,2 + τ) > 1→ 0 Hε (τ) 3

Unperturbed S4 × S1 dynamic

This map describes another period-one attractor, where no pulse was sent before time 0.
The �rst event is the signal sent by oscillators 1, 2, 3 and 4 (s1,2,3,4); the second event is the
reception of these pulses after τ time units (r1,2,3,4), which makes oscillator 5 to generate
one pulse due to a supra-threshold input (s5); the third event is the reception of this pulse
at time 2τ (r5); the last event is the pulse generation from oscillators 1, 2, 3, and 4 upon
reaching the threshold. If the event sequence is preserved, the condition B = τ + 1 − p1,2
follows from the periodicity of the orbit. A numerical example of this orbit structure is
presented in table V.

TABLE IV. Analytic table of condition for an unperturbed S4 × S1 dynamic.

event time φ1, φ2, φ3, φ4 φ5 event num.

s1,2,3,4 0 0 B 0

r1,2,3,4; s5 τ H3ε (τ) = p1,1 H4ε (B + τ) > 1→ 0 1

r5 2τ Hε (p1,1 + τ) = p1,2 τ 2

s1,2,3,4 2τ + 1− p1,2 1→ 0 τ + 1− p1,2 3

TABLE V. Analytic prediction of phase dynamic for parameters τ = 0.27, ε15, I = 1.1 and γ = 1,

realizing a S4 × S1 cycle.

event time φ1, φ2, φ3, φ4 φ5 event num.

s1,2,3,4 0.000000 0.000000 0.672908 0

r1,2,3,4; s5 0.270000 0.303940 0.000000 1

r5 0.540000 0.597091 0.270000 2

s1,2,3,4 0.942909 0.000000 0.672908 3

Unperturbed S2 × S2 × S1 dynamic

For this map, the initial conditions are such that pulses from oscillators 3 and 4 will be
received at time τ

′
after time 0. The �rst event is the pulse generation from oscillators 1 and

2 upon reaching the threshold (s1,2); the second is the reception of pulses from oscillators
3 and 4 (r(3,4)) at time τ

′
and the pulse generation from oscillator 5 (s5) caused by this
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supra-threshold input; the third event is the receive of the pulses from oscillators 1 and 2
(r1,2) at time τ that forces oscillators 3 and 4 to elicit a pulse (s3,4); the forth event is the
reception of the pulse coming from oscillator 5 (r5); the last event is the pulse generation
from oscillators 1 and 2 (s1,2) upon reaching the threshold. This map implies three periodic
conditions to describe a period-one attractor: D = p3,3 + 1 − p1,3, E = p5,3 + 1 − p1,3, and
τ = 2τ

′
+ 1− p1,3. A example of this structure is presented in table VII.

TABLE VI. Analytic table of condition for an unperturbed S2 × S2 × S1 dynamic.

event time φ1, φ2 φ3, φ4 φ5 event

num.

s1,2 0 0 D E 0

r(3,4); s5 τ
′

H2ε (τ ) = p1,1 Hε
(
D + τ

′
)
= p3,1 H2ε

(
E + τ

′
)
> 1→ 0 1

r1,2; s3,4 τ Hε
(
p1,1 + τ − τ ′

)
= p1,2 H2ε

(
p3,1 + τ − τ ′

)
> 1→ 0

H2ε

(
τ − τ ′

)
2

r5 τ + τ
′

Hε
(
p1,2 + τ

′
)
= p1,3 Hε

(
p3,2 + τ

′
)
= p3,3 p5,2 + τ

′
= p5,3 3

s1,2 τ+τ
′
+1−

p1,3

1→ 0 p3,3 + 1− p1,3 p5,3 + 1− p1,3 4

TABLE VII. Analytic prediction of phase dynamic for parameters τ = 0.49, ε = 0.025, I = 1.04

and γ = 1, realizing a S2 × S2 × S1 cycle.

event time φ1, φ2 φ3, φ4 φ5 event num.

s1,2 0.000000 0.000000 0.381978 0.795680 0

r(3,4); s5 0.119095 0.141656 0.541358 0.000000 1

r1,2; s3,4 0.490000 0.554491 0.000000 0.424775 2

r5 0.609095 0.748191 0.130168 0.543870 3

s1,2 0.860904 0.000000 0.381978 0.795680 4

C. Perturbed dynamic, return maps.

In this appendix we present three tables that show the changes to the dynamics described
in tables I, IV and VI due an incremental perturbation δ = (0, δ2, δ3, δ4, δ5), where 0 < δ2 <
δ3 < δ4 < δ5 � 1. In all cases without lose of generality oscillator 1 was taken as the
referential phase to de�ne the new cycle, since this doesn't a�ect the dynamics itself but
only the point of reference. The notation is the same as in B.
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